HOReID : Deep High-Order Mapping Enhances Pose Alignment for Person Re-Identification

Despite the remarkable progress in recent years, person Re-Identification (ReID) approaches frequently fail in cases where the semantic body parts are misaligned between the detected human boxes. To mitigate such cases, we propose a novel High-Order ReID (HOReID) framework that enables semantic pose...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 30(2021) vom: 01., Seite 2908-2922
1. Verfasser: Wang, Pingyu (VerfasserIn)
Weitere Verfasser: Zhao, Zhicheng, Su, Fei, Zu, Xingyu, Boulgouris, Nikolaos V
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Despite the remarkable progress in recent years, person Re-Identification (ReID) approaches frequently fail in cases where the semantic body parts are misaligned between the detected human boxes. To mitigate such cases, we propose a novel High-Order ReID (HOReID) framework that enables semantic pose alignment by aggregating the fine-grained part details of multilevel feature maps. The HOReID adopts a high-order mapping of multilevel feature similarities in order to emphasize the differences of the similarities between aligned and misaligned part pairs in two person images. Since the similarities of misaligned part pairs are reduced, the HOReID enhances pose-robustness within the learned features. We show that our method derives from an intuitive and interpretable motivation and elegantly reduces the misalignment problem without using any prior knowledge from human pose annotations or pose estimation networks. This paper theoretically and experimentally demonstrates the effectiveness of the proposed HOReID, achieving superior performance over the state-of-the-art methods on the four large-scale person ReID datasets
Beschreibung:Date Completed 23.07.2021
Date Revised 23.07.2021
published: Print-Electronic
Citation Status MEDLINE
ISSN:1941-0042
DOI:10.1109/TIP.2021.3055952