|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM321211731 |
003 |
DE-627 |
005 |
20231225175328.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2021 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1021/acs.langmuir.0c03216
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1070.xml
|
035 |
|
|
|a (DE-627)NLM321211731
|
035 |
|
|
|a (NLM)33560859
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Chen, Zhe
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Confined Generation of Homogeneously Dispersed Au and SnO2 Nanoparticles in Layered Silicate as Synergistic Catalysts
|
264 |
|
1 |
|c 2021
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 23.02.2021
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a With the aid of the confined conversion of layered silicate RUB-15, homogeneously dispersed Au and SnO2 nanoparticles (NPs) were generated in the confined layer space of RUB-15. The Au-SnO2/SiO2 composite was obtained with the structure that ultrafine Au and SnO2 NPs were supported on SiO2 lamellas. Benefited by the Sn(II)-assisted in situ reduction strategy, Au NPs were highly uniformed and evenly distributed in/on the RUB-15. This Au-SnO2/SiO2 composite was employed as a catalyst to the reduction of 4-nitrophenol showing excellent catalytic activity. The catalytic rate constant at room temperature was calculated to be 6.64 min-1, which was dramatically higher than that of Au/SiO2 composite produced by reduction with hydrazine hydrate on the same support of layered silicate RUB-15. The interaction between Au and SnO2 NPs increased the electron density around Au NPs, which was demonstrated to be an essential factor to the excellent catalytic activity of the Au-SnO2/SiO2 composite. The simple and universal synthesis method afforded precise control over the size/spatial arrangement of Au and SnO2 NPs on SiO2 lamellas. The high activity of the Au-SnO2/SiO2 composite demonstrated that the strategy used in this study has good potential application prospect. Furthermore, this work provided new perspective on the catalysis mechanism to the metal/semiconductor synergistic catalyst system
|
650 |
|
4 |
|a Journal Article
|
700 |
1 |
|
|a Huang, Qiang
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhang, Yifei
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Sheng, Peng
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Cui, Zhimin
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Langmuir : the ACS journal of surfaces and colloids
|d 1992
|g 37(2021), 7 vom: 23. Feb., Seite 2341-2348
|w (DE-627)NLM098181009
|x 1520-5827
|7 nnns
|
773 |
1 |
8 |
|g volume:37
|g year:2021
|g number:7
|g day:23
|g month:02
|g pages:2341-2348
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1021/acs.langmuir.0c03216
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_22
|
912 |
|
|
|a GBV_ILN_350
|
912 |
|
|
|a GBV_ILN_721
|
951 |
|
|
|a AR
|
952 |
|
|
|d 37
|j 2021
|e 7
|b 23
|c 02
|h 2341-2348
|