Amphiphilic Double-Brush Copolymers with a Polyurethane Backbone : A Bespoke Macromolecular Emulsifier for Ionic Liquid-in-Oil Emulsion

The study on ionic liquid (IL)-based emulsions is very interesting due to the "green" quality and potential wide applications of ILs, whereas the emulsifiers for the formation of IL-based emulsions are extremely limited and mainly centered on low molecular weight surfactants. In this work,...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 37(2021), 7 vom: 23. Feb., Seite 2376-2385
1. Verfasser: Gao, Yong (VerfasserIn)
Weitere Verfasser: Wu, Xionghui, Xiang, Zhe, Qi, Chenze
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:The study on ionic liquid (IL)-based emulsions is very interesting due to the "green" quality and potential wide applications of ILs, whereas the emulsifiers for the formation of IL-based emulsions are extremely limited and mainly centered on low molecular weight surfactants. In this work, synthesis of amphiphilic double-brush copolymers (DBCs) and their application as bespoke macromolecular emulsifiers for the formation of IL-containing non-aqueous emulsions are described. DBCs consisted of a polyurethane (PU) backbone and poly(N,N-dimethyl acrylamide) (PDMA) and poly(methyl methacrylate) (PMMA) chains that were grafted simultaneously at the same reactive site along the PU backbone (PU-g-PDMA/PMMA), which were synthesized through the combination of polyaddition and the reversible-deactivation radical polymerization reactions. Highly stable [Bmim][PF6]-in-benzene emulsions could be gained by adopting PU-g-PDMA/PMMA DBCs as macromolecular emulsifiers at a low content, such as 0.025 wt %. On the basis of the stability and the size of emulsion droplets, PU-g-PDMA/PMMA DBCs exhibited much better emulsifying performances than their analogues, including PU-g-PDMA, PU-g-PMMA, and PDMA-b-PMMA copolymers. Such excellent emulsifying performances of PU-g-PDMA/PMMA DBCs were due to high interfacial activities. PU-g-PDMA/PMMA DBCs exhibited higher capabilities in lowering the interfacial tension of the [Bmim][PF6]-benzene interface than their analogues. A large energy barrier to desorption of adsorbed PU-g-PDMA/PMMA DBCs from the interface contributed to high stability of the [Bmim][PF6]-in-benzene emulsion
Beschreibung:Date Revised 23.02.2021
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.0c03322