Vertical decoupling of soil nutrients and water under climate warming reduces plant cumulative nutrient uptake, water-use efficiency and productivity

© 2021 The Authors New Phytologist © 2021 New Phytologist Foundation.

Bibliographische Detailangaben
Veröffentlicht in:The New phytologist. - 1979. - 230(2021), 4 vom: 06. Mai, Seite 1378-1393
1. Verfasser: Querejeta, José Ignacio (VerfasserIn)
Weitere Verfasser: Ren, Wei, Prieto, Iván
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:The New phytologist
Schlagworte:Journal Article Research Support, Non-U.S. Gov't climate warming drylands nutrient limitation photosynthesis plant water sources warming-induced topsoil desiccation water-use efficiency Soil mehr... Water 059QF0KO0R Carbon 7440-44-0
Beschreibung
Zusammenfassung:© 2021 The Authors New Phytologist © 2021 New Phytologist Foundation.
Warming-induced desiccation of the fertile topsoil layer could lead to decreased nutrient diffusion, mobility, mineralization and uptake by roots. Increased vertical decoupling between nutrients in topsoil and water availability in subsoil/bedrock layers under warming could thereby reduce cumulative nutrient uptake over the growing season. We used a Mediterranean semiarid shrubland as model system to assess the impacts of warming-induced topsoil desiccation on plant water- and nutrient-use patterns. A 6 yr manipulative field experiment examined the effects of warming (2.5°C), rainfall reduction (30%) and their combination on soil resource utilization by Helianthemum squamatum shrubs. A drier fertile topsoil ('growth pool') under warming led to greater proportional utilization of water from deeper, wetter, but less fertile subsoil/bedrock layers ('maintenance pool') by plants. This was linked to decreased cumulative nutrient uptake, increased nonstomatal (nutritional) limitation of photosynthesis and reduced water-use efficiency, above-ground biomass growth and drought survival. Whereas a shift to greater utilization of water stored in deep subsoil/bedrock may buffer the negative impact of warming-induced topsoil desiccation on transpiration, this plastic response cannot compensate for the associated reduction in cumulative nutrient uptake and carbon assimilation, which may compromise the capacity of plants to adjust to a warmer and drier climate
Beschreibung:Date Completed 14.05.2021
Date Revised 14.05.2021
published: Print-Electronic
Citation Status MEDLINE
ISSN:1469-8137
DOI:10.1111/nph.17258