|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM321082508 |
003 |
DE-627 |
005 |
20231225175045.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2021 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1111/gcb.15546
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1070.xml
|
035 |
|
|
|a (DE-627)NLM321082508
|
035 |
|
|
|a (NLM)33547698
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Chan, Wing Yan
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Adaptive responses of free-living and symbiotic microalgae to simulated future ocean conditions
|
264 |
|
1 |
|c 2021
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 23.04.2021
|
500 |
|
|
|a Date Revised 23.04.2021
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a © 2021 John Wiley & Sons Ltd.
|
520 |
|
|
|a Marine microalgae are a diverse group of microscopic eukaryotic and prokaryotic organisms capable of photosynthesis. They are important primary producers and carbon sinks but their physiology and persistence are severely affected by global climate change. Powerful experimental evolution technologies are being used to examine the potential of microalgae to respond adaptively to current and predicted future conditions, as well as to develop resources to facilitate species conservation and restoration of ecosystem functions. This review synthesizes findings and insights from experimental evolution studies of marine microalgae in response to elevated temperature and/or pCO2 . Adaptation to these environmental conditions has been observed in many studies of marine dinoflagellates, diatoms and coccolithophores. An enhancement in traits such as growth and photo-physiological performance and an increase in upper thermal limit have been shown to be possible, although the extent and rate of change differ between microalgal taxa. Studies employing multiple monoclonal replicates showed variation in responses among replicates and revealed the stochasticity of mutations. The work to date is already providing valuable information on species' climate sensitivity or resilience to managers and policymakers but extrapolating these insights to ecosystem- and community-level impacts continues to be a challenge. We recommend future work should include in situ experiments, diurnal and seasonal fluctuations, multiple drivers and multiple starting genotypes. Fitness trade-offs, stable versus plastic responses and the genetic bases of the changes also need investigating, and the incorporation of genome resequencing into experimental designs will be invaluable
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Review
|
650 |
|
4 |
|a Symbiodiniaceae
|
650 |
|
4 |
|a adaptation
|
650 |
|
4 |
|a experimental evolution
|
650 |
|
4 |
|a global climate change
|
650 |
|
4 |
|a laboratory domestication
|
650 |
|
4 |
|a marine microalgae
|
700 |
1 |
|
|a Oakeshott, John G
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Buerger, Patrick
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Edwards, Owain R
|e verfasserin
|4 aut
|
700 |
1 |
|
|a van Oppen, Madeleine J H
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Global change biology
|d 1999
|g 27(2021), 9 vom: 15. Mai, Seite 1737-1754
|w (DE-627)NLM098239996
|x 1365-2486
|7 nnns
|
773 |
1 |
8 |
|g volume:27
|g year:2021
|g number:9
|g day:15
|g month:05
|g pages:1737-1754
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1111/gcb.15546
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 27
|j 2021
|e 9
|b 15
|c 05
|h 1737-1754
|