Scale-Dependent Friction-Coverage Relations and Nonlocal Dissipation in Surfactant Monolayers

Surfactant molecules, known as organic friction modifiers (OFMs), are routinely added to lubricants to reduce friction and wear between sliding surfaces. In macroscale experiments, friction generally decreases as the coverage of OFM molecules on the sliding surfaces increases; however, recent nanosc...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 37(2021), 7 vom: 23. Feb., Seite 2406-2418
1. Verfasser: Gao, Hongyu (VerfasserIn)
Weitere Verfasser: Ewen, James P, Hartkamp, Remco, Müser, Martin H, Dini, Daniele
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM321055764
003 DE-627
005 20231225175010.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1021/acs.langmuir.0c03403  |2 doi 
028 5 2 |a pubmed24n1070.xml 
035 |a (DE-627)NLM321055764 
035 |a (NLM)33545003 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Gao, Hongyu  |e verfasserin  |4 aut 
245 1 0 |a Scale-Dependent Friction-Coverage Relations and Nonlocal Dissipation in Surfactant Monolayers 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 23.02.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Surfactant molecules, known as organic friction modifiers (OFMs), are routinely added to lubricants to reduce friction and wear between sliding surfaces. In macroscale experiments, friction generally decreases as the coverage of OFM molecules on the sliding surfaces increases; however, recent nanoscale experiments with sharp atomic force microscopy (AFM) tips have shown increasing friction. To elucidate the origin of these opposite trends, we use nonequilibrium molecular dynamics (NEMD) simulations and study kinetic friction between OFM monolayers and an indenting nanoscale asperity. For this purpose, we investigate various coverages of stearamide OFMs on iron oxide surfaces and silica AFM tips with different radii of curvature. We show that the differences between the friction-coverage relations from macroscale and nanoscale experiments are due to molecular plowing in the latter. For our small tip radii, the friction coefficient and indentation depth both have a nonmonotonic dependence on OFM surface coverage, with maxima occurring at intermediate coverage. We rationalize the nonmonotonic relations through a competition of two effects (confinement and packing density) that varying the surface coverage has on the effective stiffness of the OFM monolayers. We also show that kinetic friction is not very sensitive to the sliding velocity in the range studied, indicating that it originates from instabilities. Indeed, we find that friction predominately originates from plowing of the monolayers by the leading edge of the tip, where gauche defects are created, while thermal dissipation is mostly localized in molecules toward the trailing edge of the tip, where the chains return to a more extended conformation 
650 4 |a Journal Article 
700 1 |a Ewen, James P  |e verfasserin  |4 aut 
700 1 |a Hartkamp, Remco  |e verfasserin  |4 aut 
700 1 |a Müser, Martin H  |e verfasserin  |4 aut 
700 1 |a Dini, Daniele  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Langmuir : the ACS journal of surfaces and colloids  |d 1992  |g 37(2021), 7 vom: 23. Feb., Seite 2406-2418  |w (DE-627)NLM098181009  |x 1520-5827  |7 nnns 
773 1 8 |g volume:37  |g year:2021  |g number:7  |g day:23  |g month:02  |g pages:2406-2418 
856 4 0 |u http://dx.doi.org/10.1021/acs.langmuir.0c03403  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_22 
912 |a GBV_ILN_350 
912 |a GBV_ILN_721 
951 |a AR 
952 |d 37  |j 2021  |e 7  |b 23  |c 02  |h 2406-2418