|
|
|
|
LEADER |
01000caa a22002652 4500 |
001 |
NLM321045807 |
003 |
DE-627 |
005 |
20240229143129.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2021 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1094/PDIS-12-20-2744-PDN
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1303.xml
|
035 |
|
|
|a (DE-627)NLM321045807
|
035 |
|
|
|a (NLM)33543992
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Gao, Qiang
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a First Report of Watermelon mosaic virus causing a Mosaic Disease on Cucumis metuliferus in China
|
264 |
|
1 |
|c 2021
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 22.02.2024
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status Publisher
|
520 |
|
|
|a Cucumis metuliferus, also called horned cucumber or jelly melon, is considered as a wild species in the Cucumis genus and a potential material for nematodes- or viruses-resistant breeding (Provvidenti, et al. 1977; Sigüenza et al. 2005; Chen et al. 2020). This species, originating from Africa, has been cultivated as a fruit in China in recent years. In July 2020, a mosaic disease was observed on C. metuliferus growing in five fields (approximately 0.7 hectare) in Urumqi, Xijiang, China, where more than 85~100% of the field plants exhibited moderate to severe viral disease-like leaf mosaic and/or deformation symptoms. Delayed flowering and small and/or deformed fruits on the affected plants could result in yield loss of about 50%. To identify the causal pathogen, the symptomatic leaf samples were collected from the five fields (five plants/points for each field) and their total RNAs were extracted using a commercial RNA extraction kit. The universal potyviral primers (Ha et al. 2008) and specific primers for a number of frequently-occurring, cucurbit crop-infecting viruses including Papaya ringspot virus (PRSV) (Lin et al. 2013), Cucumber mosaic virus (CMV) and Watermelon mosaic virus (WMV) were designed and used for detection by RT-PCR. The result showed that only the WMV primers (forward: 5'-AAGTGTGACCAAGCTTGGACTGCA-3' and reverse: 5'-CTCACCCATTGTGCCAAAGAACGT-3') could amplify the corresponding target fragment from the total RNA templates, and direct sequencing of the RT-PCR products and GenBank BLAST confirmed the presence of WMV (genus Potyvirus) in the collected C. metuliferus samples. To complete Koch's postulates, the infected C. metuliferus leaves were ground in the sodium phosphate buffer (0.01 M, pH 7.0) and the sap was mechanically inoculated onto 30 four-leaf-stage C. metuliferus seedlings (two leaves for each seedling were inoculated) kept in an insect-proof, temperature-controlled greenhouse at 25~28℃. Twenty-five of the inoculated plants were observed to have apparent leaf mosaic similar to the field symptoms two weeks after inoculation, and positive result was obtained in RT-PCR detection for the symptomatic leaves of inoculated plants using the WMV primers aforementioned, confirming the virus as the pathogen of C. metuliferus in Urumqi. To our knowledge, this is the first report of WMV naturally infecting C. metuliferus in China. We obtained the full-length sequence of the WMV Urumqi isolation (WMV-Urumqi) by sequencing the RT-PCR amplicons from seven pairs of primers spanning the viral genome and the 5'RACE and 3'RACE products. The complete sequence of WMV-Urumqi (GenBank accession no. MW345911) is 10046 nucleotides (nt) long and contains an open reading frame that encodes a polyprotein of 3220 amino acids (aa). WMV-Urumqi shares the highest nt identity (95.9%) and aa identity (98.0%) with the Cucurbita pepo-infecting isolation (KX664483) from Shanxi province, China. Our findings provide a better understanding of the host range and genetic diversity of WMV, and a useful reference for virus-resistant breeding involving C. metuliferus
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Cucumis metuliferus
|
650 |
|
4 |
|a Mosaic Disease
|
650 |
|
4 |
|a Watermelon mosaic virus
|
700 |
1 |
|
|a Ren, Hai-Long
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Xiao, Wanyu
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhang, Yan
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhou, Bo
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Xu, Donglin
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Plant disease
|d 1997
|g (2021) vom: 05. Feb.
|w (DE-627)NLM098181742
|x 0191-2917
|7 nnns
|
773 |
1 |
8 |
|g year:2021
|g day:05
|g month:02
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1094/PDIS-12-20-2744-PDN
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|j 2021
|b 05
|c 02
|