An Accurate and Lightweight Method for Human Body Image Super-Resolution

In this paper, we propose a new method to super-resolve low resolution human body images by learning efficient multi-scale features and exploiting useful human body prior. Specifically, we propose a lightweight multi-scale block (LMSB) as basic module of a coherent framework, which contains an image...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 30(2021) vom: 01., Seite 2888-2897
1. Verfasser: Liu, Yunan (VerfasserIn)
Weitere Verfasser: Zhang, Shanshan, Xu, Jie, Yang, Jian, Tai, Yu-Wing
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM320999793
003 DE-627
005 20250228222052.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2021.3055737  |2 doi 
028 5 2 |a pubmed25n1069.xml 
035 |a (DE-627)NLM320999793 
035 |a (NLM)33539298 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Liu, Yunan  |e verfasserin  |4 aut 
245 1 3 |a An Accurate and Lightweight Method for Human Body Image Super-Resolution 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 23.07.2021 
500 |a Date Revised 23.07.2021 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a In this paper, we propose a new method to super-resolve low resolution human body images by learning efficient multi-scale features and exploiting useful human body prior. Specifically, we propose a lightweight multi-scale block (LMSB) as basic module of a coherent framework, which contains an image reconstruction branch and a prior estimation branch. In the image reconstruction branch, the LMSB aggregates features of multiple receptive fields so as to gather rich context information for low-to-high resolution mapping. In the prior estimation branch, we adopt the human parsing maps and nonsubsampled shearlet transform (NSST) sub-bands to represent the human body prior, which is expected to enhance the details of reconstructed human body images. When evaluated on the newly collected HumanSR dataset, our method outperforms state-of-the-art image super-resolution methods with  ∼ 8× fewer parameters; moreover, our method significantly improves the performance of human image analysis tasks (e.g. human parsing and pose estimation) for low-resolution inputs 
650 4 |a Journal Article 
700 1 |a Zhang, Shanshan  |e verfasserin  |4 aut 
700 1 |a Xu, Jie  |e verfasserin  |4 aut 
700 1 |a Yang, Jian  |e verfasserin  |4 aut 
700 1 |a Tai, Yu-Wing  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 30(2021) vom: 01., Seite 2888-2897  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnas 
773 1 8 |g volume:30  |g year:2021  |g day:01  |g pages:2888-2897 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2021.3055737  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2021  |b 01  |h 2888-2897