Self-Healing Soft Sensors : From Material Design to Implementation

© 2021 Wiley-VCH GmbH.

Détails bibliographiques
Publié dans:Advanced materials (Deerfield Beach, Fla.). - 1998. - 33(2021), 11 vom: 12. März, Seite e2004190
Auteur principal: Khatib, Muhammad (Auteur)
Autres auteurs: Zohar, Orr, Haick, Hossam
Format: Article en ligne
Langue:English
Publié: 2021
Accès à la collection:Advanced materials (Deerfield Beach, Fla.)
Sujets:Journal Article Review electronic skins self-healing sensors soft electronics wearable devices
Description
Résumé:© 2021 Wiley-VCH GmbH.
The demand for interfacing electronics in everyday life is rapidly accelerating, with an ever-growing number of applications in wearable electronics and electronic skins for robotics, prosthetics, and other purposes. Soft sensors that efficiently detect environmental or biological/physiological stimuli have been extensively studied due to their essential role in creating the necessary interfaces for these applications. Unfortunately, due to their natural softness, these sensors are highly sensitive to structural and mechanical damage. The integration of natural properties, such as self-healing, into these systems should improve their reliability, stability, and long-term performance. Recent studies on self-healing soft sensors for varying chemical and physical parameters are herein reviewed. In addition, contemporary studies on material design, device structure, and fabrication methods for sensing platforms are also discussed. Finally, the main challenges and future perspectives in this field are introduced, while focusing on the most promising examples and directions already reported
Description:Date Completed 18.03.2021
Date Revised 18.03.2021
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202004190