Scalable Assembly of Flexible Ultrathin All-in-One Zinc-Ion Batteries with Highly Stretchable, Editable, and Customizable Functions
© 2021 Wiley-VCH GmbH.
Veröffentlicht in: | Advanced materials (Deerfield Beach, Fla.). - 1998. - 33(2021), 10 vom: 12. März, Seite e2008140 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2021
|
Zugriff auf das übergeordnete Werk: | Advanced materials (Deerfield Beach, Fla.) |
Schlagworte: | Journal Article Review all-in-one structure aqueous zinc-ion batteries integrated devices mechanical properties, ultrathin devices |
Zusammenfassung: | © 2021 Wiley-VCH GmbH. Aqueous zinc-ion batteries (ZIBs) are considered to be a promising candidate for flexible energy storage devices due to their high safety and low cost. However, the scalable assembly of flexible ZIBs is still a challenge. Here, a scalable assembly strategy is developed to fabricate flexible ZIBs with an ultrathin all-in-one structure by combining blade coating with a rolling assembly process. Such a unique all-in-one integrated structure can effectively avoid the relative displacement or detachment between neighboring components to ensure continuous and effective ion- and/or loading-transfer capacity under external deformation, resulting in excellent structural and electrochemical stability. Furthermore, the ultrathin all-in-one ZIBs can be tailored and edited controllably into desired shapes and structures, further extending their editable, stretchable, and shape-customized functions. In addition, the ultrathin all-in-one ZIBs display the ability to integrate with perovskite solar cells to achieve an energy harvesting and storage integrated system. These enlighten a broad area of flexible ZIBs to be compatible with highly flexible and wearable electronics. The scaling-up assembly strategy provides a route to design other ultrathin all-in-one energy storage devices with stretchable, editable, and customizable behaviors |
---|---|
Beschreibung: | Date Revised 10.03.2021 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1521-4095 |
DOI: | 10.1002/adma.202008140 |