Multi-Sentence Auxiliary Adversarial Networks for Fine-Grained Text-to-Image Synthesis

Due to the development of Generative Adversarial Networks (GANs), significant progress has been achieved in text-to-image synthesis task. However, most previous works have only focus on learning the semantic consistency between paired images and sentences, without exploring the semantic correlation...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 30(2021) vom: 30., Seite 2798-2809
1. Verfasser: Yang, Yanhua (VerfasserIn)
Weitere Verfasser: Wang, Lei, Xie, De, Deng, Cheng, Tao, Dacheng
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM320921611
003 DE-627
005 20231225174717.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2021.3055062  |2 doi 
028 5 2 |a pubmed24n1069.xml 
035 |a (DE-627)NLM320921611 
035 |a (NLM)33531300 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Yang, Yanhua  |e verfasserin  |4 aut 
245 1 0 |a Multi-Sentence Auxiliary Adversarial Networks for Fine-Grained Text-to-Image Synthesis 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 15.02.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Due to the development of Generative Adversarial Networks (GANs), significant progress has been achieved in text-to-image synthesis task. However, most previous works have only focus on learning the semantic consistency between paired images and sentences, without exploring the semantic correlation between different yet related sentences that describe the same image, which leads to significant visual variation among the synthesized images. Accordingly, in this article, we propose a new method for text-to-image synthesis, dubbed Multi-sentence Auxiliary Generative Adversarial Networks (MA-GAN); this approach not only improves the generation quality but also guarantees the generation similarity of related sentences by exploring the semantic correlation between different sentences describing the same image. More specifically, we propose a Single-sentence Generation and Multi-sentence Discrimination (SGMD) module that explores the semantic correlation between multiple related sentences in order to reduce the variation between their generated images and enhance the reliability of the generated results. Moreover, a Progressive Negative Sample Selection mechanism (PNSS) is designed to mine more suitable negative samples for training, which can effectively promote detailed discrimination ability in the generative model and facilitate the generation of more fine-grained results. Extensive experiments on Oxford-102 and CUB datasets reveal that our MA-GAN significantly outperforms the state-of-the-art methods 
650 4 |a Journal Article 
700 1 |a Wang, Lei  |e verfasserin  |4 aut 
700 1 |a Xie, De  |e verfasserin  |4 aut 
700 1 |a Deng, Cheng  |e verfasserin  |4 aut 
700 1 |a Tao, Dacheng  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 30(2021) vom: 30., Seite 2798-2809  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:30  |g year:2021  |g day:30  |g pages:2798-2809 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2021.3055062  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2021  |b 30  |h 2798-2809