JASMONATE RESISTANT 1 negatively regulates root growth under boron deficiency in Arabidopsis

© The Author(s) 2021. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissionsoup.com.

Bibliographische Detailangaben
Veröffentlicht in:Journal of experimental botany. - 1985. - 72(2021), 8 vom: 02. Apr., Seite 3108-3121
1. Verfasser: Huang, Yupu (VerfasserIn)
Weitere Verfasser: Wang, Sheliang, Shi, Lei, Xu, Fangsen
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Journal of experimental botany
Schlagworte:Journal Article Research Support, Non-U.S. Gov't jar1-1 mutant nip5;1 mutant Arabidopsis boron deficiency ethylene signaling jasmonate signaling Arabidopsis Proteins Cyclopentanes mehr... Oxylipins jasmonic acid 6RI5N05OWW JAR1 protein, Arabidopsis EC 2.7.7.- Nucleotidyltransferases Boron N9E3X5056Q
Beschreibung
Zusammenfassung:© The Author(s) 2021. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissionsoup.com.
Boron (B) is an essential micronutrient for plant growth and development. Jasmonic acid (JA) plays pivotal roles in plant growth, but the underlying molecular mechanism of JA involvement in B-deficiency-induced root growth inhibition is yet to be explored. In this study, we investigated the response of JA to B deficiency and the mechanism of JAR1-dependent JA signaling in root growth inhibition under B deficiency in Arabidopsis. B deficiency enhanced JA signaling in roots, and root growth inhibition was partially restored by JA biosynthesis inhibition. The jar1-1 (jasmonate-resistant 1, JAR1) mutant, and mutants of coronatine-insensitive 1 (coi1-2) and myc2 defective in JA signaling showed insensitivity to B deficiency. The ethylene-overproduction mutant eto1 and ethylene-insensitive mutant etr1 showed sensitivity and insensitivity to B deficiency, respectively, suggesting that ethylene is involved in the inhibition of primary root growth under B deficiency. Furthermore, after a decline in levels of EIN3, which may contribute to root growth, ethylene signaling was weakened in the jar1-1 mutant root under B deficiency. Under B deficiency, B concentrations were increased in the roots and shoots of the jar1-1 mutant, owing to the large root system and its activity. Therefore, our findings revealed that JA, which is involved in the inhibition of root growth under B deficiency, is regulated by JAR1-activated JA and ethylene signaling pathways
Beschreibung:Date Completed 21.05.2021
Date Revised 31.05.2022
published: Print
Citation Status MEDLINE
ISSN:1460-2431
DOI:10.1093/jxb/erab041