Development of a Sequential Sampling Plan using Spatial Attributes of Cercospora Leaf Spot Epidemics of Table Beet in New York

Sampling strategies that effectively assess disease intensity in the field are important to underpin management decisions. To develop a sequential sampling plan for the incidence of Cercospora leaf spot (CLS), caused by Cercospora beticola, 31 table beet fields were assessed in the state of New York...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Plant disease. - 1997. - 105(2021), 9 vom: 02. Sept., Seite 2453-2465
1. Verfasser: Heck, Daniel W (VerfasserIn)
Weitere Verfasser: Kikkert, Julie R, Hanson, Linda E, Pethybridge, Sarah J
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Plant disease
Schlagworte:Journal Article disease control and pest management ecology and epidemiology fungi
LEADER 01000naa a22002652 4500
001 NLM320900037
003 DE-627
005 20231225174650.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1094/PDIS-07-20-1619-RE  |2 doi 
028 5 2 |a pubmed24n1069.xml 
035 |a (DE-627)NLM320900037 
035 |a (NLM)33529070 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Heck, Daniel W  |e verfasserin  |4 aut 
245 1 0 |a Development of a Sequential Sampling Plan using Spatial Attributes of Cercospora Leaf Spot Epidemics of Table Beet in New York 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 10.12.2021 
500 |a Date Revised 14.12.2021 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Sampling strategies that effectively assess disease intensity in the field are important to underpin management decisions. To develop a sequential sampling plan for the incidence of Cercospora leaf spot (CLS), caused by Cercospora beticola, 31 table beet fields were assessed in the state of New York. Assessments of CLS incidence were performed in six leaves arbitrarily selected in 51 sampling locations along each of three to six linear transects per field. Spatial pattern analyses were performed, and results were used to develop sequential sampling estimation and classification models. CLS incidence (p) ranged from 0.13 to 0.92 with a median of 0.31, and beta-binomial distribution, which is reflective of aggregation, best described the spatial patterns observed. Aggregation was commonly detected (>95%) by methods using the point-process approach, runs analyses, and autocorrelation up to the fourth spatial lag. For Spatial Analysis by Distance Indices, or SADIE, 45% of the datasets were classified as a random pattern. In the sequential sampling estimation and classification models, disease units are sampled until a prespecified target is achieved. For estimation, the goal was sampling CLS incidence with a preselected coefficient of variation (C). Achieving the C = 0.1 was challenging with <51 sampling units, and only observed on datasets with incidence >0.3. Reducing the level of precision, i.e., increasing C to 0.2, allowed the preselected C to be achieved with a lower number of sampling units and with an estimated incidence ([Formula: see text]) close to the true value of p. For classification, the goal was to classify the datasets above or below prespecified thresholds (pt) used for CLS management. The average sample number, or ASN, was determined by Monte Carlo simulations, and was between 20 and 45 at disease incidence values close to pt, and approximately 11 when far from pt. Correct decisions occurred in >76% of the validation datasets. Results indicated these sequential sampling plans can be used to effectively assess CLS incidence in table beet fields 
650 4 |a Journal Article 
650 4 |a disease control and pest management 
650 4 |a ecology and epidemiology 
650 4 |a fungi 
700 1 |a Kikkert, Julie R  |e verfasserin  |4 aut 
700 1 |a Hanson, Linda E  |e verfasserin  |4 aut 
700 1 |a Pethybridge, Sarah J  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Plant disease  |d 1997  |g 105(2021), 9 vom: 02. Sept., Seite 2453-2465  |w (DE-627)NLM098181742  |x 0191-2917  |7 nnns 
773 1 8 |g volume:105  |g year:2021  |g number:9  |g day:02  |g month:09  |g pages:2453-2465 
856 4 0 |u http://dx.doi.org/10.1094/PDIS-07-20-1619-RE  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 105  |j 2021  |e 9  |b 02  |c 09  |h 2453-2465