A low CO2-responsive mutant of Setaria viridis reveals that reduced carbonic anhydrase limits C4 photosynthesis

© The Author(s) 2021. Published by Oxford University Press on behalf of the Society for Experimental Biology.

Bibliographische Detailangaben
Veröffentlicht in:Journal of experimental botany. - 1985. - 72(2021), 8 vom: 02. Apr., Seite 3122-3136
1. Verfasser: Chatterjee, Jolly (VerfasserIn)
Weitere Verfasser: Coe, Robert A, Acebron, Kelvin, Thakur, Vivek, Yennamalli, Ragothaman M, Danila, Florence, Lin, Hsiang-Chun, Balahadia, Christian Paolo, Bagunu, Efren, Padhma, Preiya P O S, Bala, Soumi, Yin, Xiaojia, Rizal, Govinda, Dionora, Jacqueline, Furbank, Robert T, von Caemmerer, Susanne, Quick, William Paul
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Journal of experimental botany
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Setaria viridis C4 photosynthesis C4 rice Carbonic anhydrase forward genetics mutant screen Plant Proteins Carbon Dioxide mehr... 142M471B3J Carbonic Anhydrases EC 4.2.1.1
LEADER 01000naa a22002652 4500
001 NLM320894533
003 DE-627
005 20231225174643.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1093/jxb/erab039  |2 doi 
028 5 2 |a pubmed24n1069.xml 
035 |a (DE-627)NLM320894533 
035 |a (NLM)33528493 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Chatterjee, Jolly  |e verfasserin  |4 aut 
245 1 2 |a A low CO2-responsive mutant of Setaria viridis reveals that reduced carbonic anhydrase limits C4 photosynthesis 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 21.05.2021 
500 |a Date Revised 31.05.2022 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a © The Author(s) 2021. Published by Oxford University Press on behalf of the Society for Experimental Biology. 
520 |a In C4 species, β-carbonic anhydrase (CA), localized to the cytosol of the mesophyll cells, accelerates the interconversion of CO2 to HCO3-, the substrate used by phosphoenolpyruvate carboxylase (PEPC) in the first step of C4 photosynthesis. Here we describe the identification and characterization of low CO2-responsive mutant 1 (lcr1) isolated from an N-nitroso-N-methylurea- (NMU) treated Setaria viridis mutant population. Forward genetic investigation revealed that the mutated gene Sevir.5G247800 of lcr1 possessed a single nucleotide transition from cytosine to thymine in a β-CA gene causing an amino acid change from leucine to phenylalanine. This resulted in severe reduction in growth and photosynthesis in the mutant. Both the CO2 compensation point and carbon isotope discrimination values of the mutant were significantly increased. Growth of the mutants was stunted when grown under ambient pCO2 but recovered at elevated pCO2. Further bioinformatics analyses revealed that the mutation has led to functional changes in one of the conserved residues of the protein, situated near the catalytic site. CA transcript accumulation in the mutant was 80% lower, CA protein accumulation 30% lower, and CA activity ~98% lower compared with the wild type. Changes in the abundance of other primary C4 pathway enzymes were observed; accumulation of PEPC protein was significantly increased and accumulation of malate dehydrogenase and malic enzyme decreased. The reduction of CA protein activity and abundance in lcr1 restricts the supply of bicarbonate to PEPC, limiting C4 photosynthesis and growth. This study establishes Sevir.5G247800 as the major CA allele in Setaria for C4 photosynthesis and provides important insights into the function of CA in C4 photosynthesis that would be required to generate a rice plant with a functional C4 biochemical pathway 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a Setaria viridis 
650 4 |a C4 photosynthesis 
650 4 |a C4 rice 
650 4 |a Carbonic anhydrase 
650 4 |a forward genetics 
650 4 |a mutant screen 
650 7 |a Plant Proteins  |2 NLM 
650 7 |a Carbon Dioxide  |2 NLM 
650 7 |a 142M471B3J  |2 NLM 
650 7 |a Carbonic Anhydrases  |2 NLM 
650 7 |a EC 4.2.1.1  |2 NLM 
700 1 |a Coe, Robert A  |e verfasserin  |4 aut 
700 1 |a Acebron, Kelvin  |e verfasserin  |4 aut 
700 1 |a Thakur, Vivek  |e verfasserin  |4 aut 
700 1 |a Yennamalli, Ragothaman M  |e verfasserin  |4 aut 
700 1 |a Danila, Florence  |e verfasserin  |4 aut 
700 1 |a Lin, Hsiang-Chun  |e verfasserin  |4 aut 
700 1 |a Balahadia, Christian Paolo  |e verfasserin  |4 aut 
700 1 |a Bagunu, Efren  |e verfasserin  |4 aut 
700 1 |a Padhma, Preiya P O S  |e verfasserin  |4 aut 
700 1 |a Bala, Soumi  |e verfasserin  |4 aut 
700 1 |a Yin, Xiaojia  |e verfasserin  |4 aut 
700 1 |a Rizal, Govinda  |e verfasserin  |4 aut 
700 1 |a Dionora, Jacqueline  |e verfasserin  |4 aut 
700 1 |a Furbank, Robert T  |e verfasserin  |4 aut 
700 1 |a von Caemmerer, Susanne  |e verfasserin  |4 aut 
700 1 |a Quick, William Paul  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of experimental botany  |d 1985  |g 72(2021), 8 vom: 02. Apr., Seite 3122-3136  |w (DE-627)NLM098182706  |x 1460-2431  |7 nnns 
773 1 8 |g volume:72  |g year:2021  |g number:8  |g day:02  |g month:04  |g pages:3122-3136 
856 4 0 |u http://dx.doi.org/10.1093/jxb/erab039  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 72  |j 2021  |e 8  |b 02  |c 04  |h 3122-3136