Divergent species-specific impacts of whole ecosystem warming and elevated CO2 on vegetation water relations in an ombrotrophic peatland
© 2021 John Wiley & Sons Ltd.
Veröffentlicht in: | Global change biology. - 1999. - 27(2021), 9 vom: 15. Mai, Seite 1820-1835 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2021
|
Zugriff auf das übergeordnete Werk: | Global change biology |
Schlagworte: | Journal Article black spruce boreal forest climate change hydraulic stress sap flow water potential Water 059QF0KO0R Carbon Dioxide |
Zusammenfassung: | © 2021 John Wiley & Sons Ltd. Boreal peatland forests have relatively low species diversity and thus impacts of climate change on one or more dominant species could shift ecosystem function. Despite abundant soil water availability, shallowly rooted vascular plants within peatlands may not be able to meet foliar demand for water under drought or heat events that increase vapor pressure deficits while reducing near surface water availability, although concurrent increases in atmospheric CO2 could buffer resultant hydraulic stress. We assessed plant water relations of co-occurring shrub (primarily Rhododendron groenlandicum and Chamaedaphne calyculata) and tree (Picea mariana and Larix laricina) species prior to, and in response to whole ecosystem warming (0 to +9°C) and elevated CO2 using 12.8-m diameter open-top enclosures installed within an ombrotrophic bog. Water relations (water potential [Ψ], turgor loss point, foliar and root hydraulic conductivity) were assessed prior to treatment initiation, then Ψ and peak sap flow (trees only) assessed after 1 or 2 years of treatments. Under the higher temperature treatments, L. laricina Ψ exceeded its turgor loss point, increased its peak sap flow, and was not able to recover Ψ overnight. In contrast, P. mariana operated below its turgor loss point and maintained constant Ψ and sap flow across warming treatments. Similarly, C. calyculata Ψ stress increased with temperature while R. groenlandicum Ψ remained at pretreatment levels. The more anisohydric behavior of L. laricina and C. calyculata may provide greater net C uptake with warming, while the more conservative P. mariana and R. groenlandicum maintained greater hydraulic safety. These latter species also responded to elevated CO2 by reduced Ψ stress, which may also help limit hydraulic failure during periods of extreme drought or heat in the future. Along with Sphagnum moss, the species-specific responses of peatland vascular communities to drier or hotter conditions will shape boreal peatland composition and function in the future |
---|---|
Beschreibung: | Date Completed 23.04.2021 Date Revised 23.04.2021 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1365-2486 |
DOI: | 10.1111/gcb.15543 |