CapsField : Light Field-Based Face and Expression Recognition in the Wild Using Capsule Routing

Light field (LF) cameras provide rich spatio-angular visual representations by sensing the visual scene from multiple perspectives and have recently emerged as a promising technology to boost the performance of human-machine systems such as biometrics and affective computing. Despite the significant...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 30(2021) vom: 01., Seite 2627-2642
1. Verfasser: Sepas-Moghaddam, Alireza (VerfasserIn)
Weitere Verfasser: Etemad, Ali, Pereira, Fernando, Correia, Paulo Lobato
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM320849252
003 DE-627
005 20231225174525.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2021.3054476  |2 doi 
028 5 2 |a pubmed24n1069.xml 
035 |a (DE-627)NLM320849252 
035 |a (NLM)33523811 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Sepas-Moghaddam, Alireza  |e verfasserin  |4 aut 
245 1 0 |a CapsField  |b Light Field-Based Face and Expression Recognition in the Wild Using Capsule Routing 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 23.07.2021 
500 |a Date Revised 23.07.2021 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Light field (LF) cameras provide rich spatio-angular visual representations by sensing the visual scene from multiple perspectives and have recently emerged as a promising technology to boost the performance of human-machine systems such as biometrics and affective computing. Despite the significant success of LF representation for constrained facial image analysis, this technology has never been used for face and expression recognition in the wild. In this context, this paper proposes a new deep face and expression recognition solution, called CapsField, based on a convolutional neural network and an additional capsule network that utilizes dynamic routing to learn hierarchical relations between capsules. CapsField extracts the spatial features from facial images and learns the angular part-whole relations for a selected set of 2D sub-aperture images rendered from each LF image. To analyze the performance of the proposed solution in the wild, the first in the wild LF face dataset, along with a new complementary constrained face dataset captured from the same subjects recorded earlier have been captured and are made available. A subset of the in the wild dataset contains facial images with different expressions, annotated for usage in the context of face expression recognition tests. An extensive performance assessment study using the new datasets has been conducted for the proposed and relevant prior solutions, showing that the CapsField proposed solution achieves superior performance for both face and expression recognition tasks when compared to the state-of-the-art 
650 4 |a Journal Article 
700 1 |a Etemad, Ali  |e verfasserin  |4 aut 
700 1 |a Pereira, Fernando  |e verfasserin  |4 aut 
700 1 |a Correia, Paulo Lobato  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 30(2021) vom: 01., Seite 2627-2642  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:30  |g year:2021  |g day:01  |g pages:2627-2642 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2021.3054476  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2021  |b 01  |h 2627-2642