Demonstration-scale evaluation of ozone-biofiltration-granular activated carbon advanced water treatment for managed aquifer recharge

© 2021 Water Environment Federation.

Bibliographische Detailangaben
Veröffentlicht in:Water environment research : a research publication of the Water Environment Federation. - 1998. - 93(2021), 8 vom: 01. Aug., Seite 1157-1172
1. Verfasser: Hogard, Samantha (VerfasserIn)
Weitere Verfasser: Salazar-Benites, Germano, Pearce, Robert, Nading, Tyler, Schimmoller, Larry, Wilson, Christopher, Heisig-Mitchell, Jamie, Bott, Charles
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Water environment research : a research publication of the Water Environment Federation
Schlagworte:Journal Article 1,4-dioxane NDMA biofiltration bromate granular activated carbon managed aquifer recharge ozone total organic carbon Water Pollutants, Chemical mehr... Charcoal 16291-96-6 Ozone 66H7ZZK23N
Beschreibung
Zusammenfassung:© 2021 Water Environment Federation.
The Sustainable Water Initiative for Tomorrow (SWIFT) program is the effort of the Hampton Roads Sanitation District to implement indirect potable reuse to recharge the depleted Potomac Aquifer. This initiative is being demonstrated at the 1-MGD SWIFT Research Center with a treatment train including coagulation/flocculation/sedimentation (floc/sed), ozonation, biofiltration (BAF), granular activated carbon (GAC) adsorption, and UV disinfection, followed by managed aquifer recharge. Bulk total organic carbon (TOC) removal occurred via multiple treatment barriers including, floc/sed (26% removal), ozone/BAF (30% removal), and adsorption by GAC. BAF acclimation was observed during the first months of plant operation which coincided with the establishment of biological nitrification and dissolved metal removal. Bromate formation during ozonation was efficiently controlled below 10 µg/L using preformed monochloramine and preoxidation with free chlorine. N-nitrosodimethylamine (NDMA) was formed at an average concentration of 53 ng/L post-ozonation and was removed >70% by the BAFs after several months of operation. Contaminants of emerging concern were removed by multiple treatment barriers including oxidation, biological degradation, and adsorption. The breakthrough of these contaminants and bulk TOC will likely determine the replacement interval of GAC. The ozone/BAC/GAC treatment process was shown to meet all defined treatment goals for managed aquifer recharge. PRACTITIONER POINTS: Floc/sed, biofiltration, and GAC adsorption provide important barriers in carbon-based treatment trains for bulk TOC and trace organic contaminant removal. Biofilter acclimation was observed during the first three months of operation in each operating period as evidenced by the establishment of nitrification. Bromate was effectively controlled during ozonation of a high bromide water with monochloramine doses of 3-5 mg/L. NDMA was formed at an average concentration of 53 ng/L by ozonation and complete removal was achieved by BAFs after several months of biological acclimation. An average 25% removal of 1,4-dioxane was achieved via oxidation by hydroxyl radicals during ozonation
Beschreibung:Date Completed 27.08.2021
Date Revised 27.08.2021
published: Print-Electronic
Citation Status MEDLINE
ISSN:1554-7531
DOI:10.1002/wer.1525