One DAG to Rule Them All
In this paper, we present novel strategies for optimizing the performance of many binary image processing algorithms. These strategies are collected in an open-source framework, GRAPHGEN, that is able to automatically generate optimized C++ source code implementing the desired optimizations. Simply...
Veröffentlicht in: | IEEE transactions on pattern analysis and machine intelligence. - 1979. - PP(2021) vom: 28. Jan. |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2021
|
Zugriff auf das übergeordnete Werk: | IEEE transactions on pattern analysis and machine intelligence |
Schlagworte: | Journal Article |
Zusammenfassung: | In this paper, we present novel strategies for optimizing the performance of many binary image processing algorithms. These strategies are collected in an open-source framework, GRAPHGEN, that is able to automatically generate optimized C++ source code implementing the desired optimizations. Simply starting from a set of rules, the algorithms introduced with the GRAPHGEN framework can generate decision trees with minimum average path-length, possibly considering image pattern frequencies, apply state prediction and code compression by the use of Directed Rooted Acyclic Graphs (DRAGs). Moreover, the proposed algorithmic solutions allow to combine different optimization techniques and significantly improve performance. Our proposal is showcased on three classical and widely employed algorithms (namely Connected Components Labeling, Thinning, and Contour Tracing). When compared to existing approaches -in 2D and 3D-, implementations using the generated optimal DRAGs perform significantly better than previous state-of-the-art algorithms, both on CPU and GPU |
---|---|
Beschreibung: | Date Revised 22.02.2024 published: Print-Electronic Citation Status Publisher |
ISSN: | 1939-3539 |
DOI: | 10.1109/TPAMI.2021.3055337 |