|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM320664325 |
003 |
DE-627 |
005 |
20231225174048.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2021 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.2166/wst.2020.573
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1068.xml
|
035 |
|
|
|a (DE-627)NLM320664325
|
035 |
|
|
|a (NLM)33504693
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Keskin, Başak
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Halloysite nanotube blended nanocomposite ultrafiltration membranes for reactive dye removal
|
264 |
|
1 |
|c 2021
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 29.01.2021
|
500 |
|
|
|a Date Revised 29.01.2021
|
500 |
|
|
|a published: Print
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a In this paper, ultrafiltration (UF) flat sheet membranes were manufactured by introducing two diverse halloysite nanotubes (HNT) size (5 μm and 63 μm) and five different (0, 0.63, 1.88, 3.13, 6.30 wt %) ratios by wet phase inversion. Some characterization methods which are contact angle, zeta potential, viscosity, scanning electron microscopy (SEM) and Young's modulus measurements were used for ultrafiltration membranes. Synthetic dye waters which were Setazol Red and Reactive Orange were used for filtration performance tests. These dye solutions were filtered in three different pH conditions and three different temperature conditions for pH and temperature resistance to understand how flux and removal efficiency change. The best water permeability results were obtained as 190.5 LMH and 192 LMH, for halloysite nanotubes (HNT) sizes of 5 μm and 63 μm respectively. The best water and dye performance of UF membrane contains 1.88% w/w ratio of HNT, which showed increased water flux and dye flux of membranes according to different HNT concentrations including ultrafiltration membranes
|
650 |
|
4 |
|a Journal Article
|
650 |
|
7 |
|a Membranes, Artificial
|2 NLM
|
650 |
|
7 |
|a Clay
|2 NLM
|
650 |
|
7 |
|a T1FAD4SS2M
|2 NLM
|
700 |
1 |
|
|a Ağtaş, Meltem
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Ormancı-Acar, Türkan
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Türken, Türker
|e verfasserin
|4 aut
|
700 |
1 |
|
|a İmer, Derya Y
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Ünal, Serkan
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Menceloğlu, Yusuf Z
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Uçar-Demir, Tuğba
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Koyuncu, İsmail
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Water science and technology : a journal of the International Association on Water Pollution Research
|d 1986
|g 83(2021), 2 vom: 30. Jan., Seite 271-283
|w (DE-627)NLM098149431
|x 0273-1223
|7 nnns
|
773 |
1 |
8 |
|g volume:83
|g year:2021
|g number:2
|g day:30
|g month:01
|g pages:271-283
|
856 |
4 |
0 |
|u http://dx.doi.org/10.2166/wst.2020.573
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 83
|j 2021
|e 2
|b 30
|c 01
|h 271-283
|