Crowd Scene Analysis Encounters High Density and Scale Variation

Crowd scene analysis receives growing attention due to its wide applications. Grasping the accurate crowd location is important for identifying high-risk regions. In this article, we propose a Compressed Sensing based Output Encoding (CSOE) scheme, which casts detecting pixel coordinates of small ob...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 30(2021) vom: 02., Seite 2745-2757
1. Verfasser: Xue, Yao (VerfasserIn)
Weitere Verfasser: Li, Yonghui, Liu, Siming, Zhang, Xingjun, Qian, Xueming
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM320647676
003 DE-627
005 20231225174028.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2021.3049963  |2 doi 
028 5 2 |a pubmed24n1068.xml 
035 |a (DE-627)NLM320647676 
035 |a (NLM)33502976 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Xue, Yao  |e verfasserin  |4 aut 
245 1 0 |a Crowd Scene Analysis Encounters High Density and Scale Variation 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 15.02.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Crowd scene analysis receives growing attention due to its wide applications. Grasping the accurate crowd location is important for identifying high-risk regions. In this article, we propose a Compressed Sensing based Output Encoding (CSOE) scheme, which casts detecting pixel coordinates of small objects into a task of signal regression in encoding signal space. To prevent gradient vanishing, we derive our own sparse reconstruction backpropagation rule that is adaptive to distinct implementations of sparse reconstruction and makes the whole model end-to-end trainable. With the support of CSOE and the backpropagation rule, the proposed method shows more robustness to deep model training error, which is especially harmful to crowd counting and localization. The proposed method achieves state-of-the-art performance across four mainstream datasets, especially achieves excellent results in highly crowded scenes. A series of analysis and experiments support our claim that regression in CSOE space is better than traditionally detecting coordinates of small objects in pixel space for highly crowded scenes 
650 4 |a Journal Article 
700 1 |a Li, Yonghui  |e verfasserin  |4 aut 
700 1 |a Liu, Siming  |e verfasserin  |4 aut 
700 1 |a Zhang, Xingjun  |e verfasserin  |4 aut 
700 1 |a Qian, Xueming  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 30(2021) vom: 02., Seite 2745-2757  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:30  |g year:2021  |g day:02  |g pages:2745-2757 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2021.3049963  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2021  |b 02  |h 2745-2757