Multi-Task Learning for Dense Prediction Tasks : A Survey

With the advent of deep learning, many dense prediction tasks, i.e., tasks that produce pixel-level predictions, have seen significant performance improvements. The typical approach is to learn these tasks in isolation, that is, a separate neural network is trained for each individual task. Yet, rec...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 44(2022), 7 vom: 03. Juli, Seite 3614-3633
1. Verfasser: Vandenhende, Simon (VerfasserIn)
Weitere Verfasser: Georgoulis, Stamatios, Van Gansbeke, Wouter, Proesmans, Marc, Dai, Dengxin, Van Gool, Luc
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM320592308
003 DE-627
005 20231225173918.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2021.3054719  |2 doi 
028 5 2 |a pubmed24n1068.xml 
035 |a (DE-627)NLM320592308 
035 |a (NLM)33497328 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Vandenhende, Simon  |e verfasserin  |4 aut 
245 1 0 |a Multi-Task Learning for Dense Prediction Tasks  |b A Survey 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 07.06.2022 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a With the advent of deep learning, many dense prediction tasks, i.e., tasks that produce pixel-level predictions, have seen significant performance improvements. The typical approach is to learn these tasks in isolation, that is, a separate neural network is trained for each individual task. Yet, recent multi-task learning (MTL) techniques have shown promising results w.r.t. performance, computations and/or memory footprint, by jointly tackling multiple tasks through a learned shared representation. In this survey, we provide a well-rounded view on state-of-the-art deep learning approaches for MTL in computer vision, explicitly emphasizing on dense prediction tasks. Our contributions concern the following. First, we consider MTL from a network architecture point-of-view. We include an extensive overview and discuss the advantages/disadvantages of recent popular MTL models. Second, we examine various optimization methods to tackle the joint learning of multiple tasks. We summarize the qualitative elements of these works and explore their commonalities and differences. Finally, we provide an extensive experimental evaluation across a variety of dense prediction benchmarks to examine the pros and cons of the different methods, including both architectural and optimization based strategies 
650 4 |a Journal Article 
700 1 |a Georgoulis, Stamatios  |e verfasserin  |4 aut 
700 1 |a Van Gansbeke, Wouter  |e verfasserin  |4 aut 
700 1 |a Proesmans, Marc  |e verfasserin  |4 aut 
700 1 |a Dai, Dengxin  |e verfasserin  |4 aut 
700 1 |a Van Gool, Luc  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 44(2022), 7 vom: 03. Juli, Seite 3614-3633  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:44  |g year:2022  |g number:7  |g day:03  |g month:07  |g pages:3614-3633 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2021.3054719  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 44  |j 2022  |e 7  |b 03  |c 07  |h 3614-3633