Probing Kinetics and Mechanism of Formation of Mixed Metallic Nanoparticles in a Polymer Membrane by Galvanic Replacement between Two Immiscible Metals : Case Study of Nickel/Silver Nanoparticle Synthesis

Galvanic replacement between metals has received notable research interest for the synthesis of heterometallic nanostructures. The growth pattern of the nanostructures depends on several factors such as extent of lattice mismatch, adhesive interaction between the metals, cohesive forces of the indiv...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 37(2021), 5 vom: 09. Feb., Seite 1637-1650
1. Verfasser: Gaidhani, Nikita G (VerfasserIn)
Weitere Verfasser: Patra, Sabyasachi, Chandwadkar, Hemant S, Sen, Debasis, Majumder, Chiranjib, Ramagiri, Shobha V, Bellare, Jayesh R
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM320585662
003 DE-627
005 20231225173910.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1021/acs.langmuir.0c02311  |2 doi 
028 5 2 |a pubmed24n1068.xml 
035 |a (DE-627)NLM320585662 
035 |a (NLM)33496595 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Gaidhani, Nikita G  |e verfasserin  |4 aut 
245 1 0 |a Probing Kinetics and Mechanism of Formation of Mixed Metallic Nanoparticles in a Polymer Membrane by Galvanic Replacement between Two Immiscible Metals  |b Case Study of Nickel/Silver Nanoparticle Synthesis 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 09.02.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Galvanic replacement between metals has received notable research interest for the synthesis of heterometallic nanostructures. The growth pattern of the nanostructures depends on several factors such as extent of lattice mismatch, adhesive interaction between the metals, cohesive forces of the individual metals, etc. Due to the difficulties in probing ultrafast kinetics of the galvanic replacement reaction and particle growth in solution, real-time mechanistic investigations are often limited. As a result, the growth mechanism of one metal on the surface of another metal at the nanoscale is poorly understood so far. In the present work, we could successfully probe the galvanic replacement of silver ions with nickel nanoparticles, stabilized in a polymer membrane, using two complementary methods, namely, small-angle X-ray scattering (SAXS) and radiolabeling, and the results are supported by density functional theory (DFT) computations. The silver-nickel system has been chosen for the present investigation because of the high degree of bulk immiscibility caused by the large lattice mismatch (15.9%) and the weak adhesive interaction, which makes it a perfect model system for immiscible metal pairs. Membrane, as a host medium, plays a crucial role in retarding the kinetics of atomic and particle rearrangements (nucleation and growth) due to slower mobility of the atoms (monomers) and particles within the polymer network. This allowed us to examine the real-time concentration of silver monomers during galvanic replacement of silver ions with nickel nanoparticles and evolution of Ni/Ag nanoparticles. From combined experiment and DFT computations, it has been demonstrated, for the first time to the best of our knowledge, that the majority of silver atoms, which are produced on the nickel nanoparticle surface by galvanic reactions, do not form traditional core-shell nanostructures with nickel and undergo a self-governing sequential nucleation and growth of silver nanoparticles via formation of intermediate prenucleation silver clusters, leading to the formation of mixed metallic nanoparticles in the membrane. The surface of NiNPs has a heterogeneous effect on the silver nucleation pathway, which is evident from the reduced critical free energy barrier of nucleation (ΔGcrit). The present work establishes an original mechanistic pathway based on a sequential nucleation model for formation of mixed metallic nanoparticles by the galvanic replacement route, which opens up future possibilities for size-controlled synthesis in mixed systems 
650 4 |a Journal Article 
700 1 |a Patra, Sabyasachi  |e verfasserin  |4 aut 
700 1 |a Chandwadkar, Hemant S  |e verfasserin  |4 aut 
700 1 |a Sen, Debasis  |e verfasserin  |4 aut 
700 1 |a Majumder, Chiranjib  |e verfasserin  |4 aut 
700 1 |a Ramagiri, Shobha V  |e verfasserin  |4 aut 
700 1 |a Bellare, Jayesh R  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Langmuir : the ACS journal of surfaces and colloids  |d 1992  |g 37(2021), 5 vom: 09. Feb., Seite 1637-1650  |w (DE-627)NLM098181009  |x 1520-5827  |7 nnns 
773 1 8 |g volume:37  |g year:2021  |g number:5  |g day:09  |g month:02  |g pages:1637-1650 
856 4 0 |u http://dx.doi.org/10.1021/acs.langmuir.0c02311  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_22 
912 |a GBV_ILN_350 
912 |a GBV_ILN_721 
951 |a AR 
952 |d 37  |j 2021  |e 5  |b 09  |c 02  |h 1637-1650