Valorization of polymeric fractions and metals from end of life photovoltaic panels

Copyright © 2021 Elsevier Ltd. All rights reserved.

Bibliographische Detailangaben
Veröffentlicht in:Waste management (New York, N.Y.). - 1999. - 122(2021) vom: 01. März, Seite 89-99
1. Verfasser: Rubino, Antonio (VerfasserIn)
Weitere Verfasser: Schiavi, Pier Giorgio, Altimari, Pietro, Pagnanelli, Francesca
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Waste management (New York, N.Y.)
Schlagworte:Journal Article End of life photovoltaic panels Metals extraction Polymeric material recycling Recycling Silicon Silver Metals Polymers Z4152N8IUI
Beschreibung
Zusammenfassung:Copyright © 2021 Elsevier Ltd. All rights reserved.
The increase in the annual flux of the end-of-life photovoltaic panels (EoL-PVPs) imposed the development of effective recycling strategies to reach EU regulation targets (i.e. 80% recycling; 85% recovery, starting from August 2018). The recycling targets in a PVP are generally glass, photovoltaic cell and metals, while no scientific paper or patent addressed polymeric fractions recycling and recovery, i.e. encapsulant polymer (EVA) and backsheet (Tedlar), starting from preliminarily milled EoL-PVPs. In the present study an optimization following the solvent treatment operation of the basic Photolife process (demonstrated at pilot scale), was proposed (lab scale) and validated (micropilot scale), focusing on polymers separation and metals recovery. The optimization was performed by testing 4 different processes. Specifically, the selectivity of the filtration operation (subsequent the solvent treatment) on polymers separation grade was evaluated, demonstrating that Tedlar can be effectively separated from EVA residues. Moreover, in comparison to the basic Photolife, a further operation was introduced treating thermally the EVA residues (containing the PV cell). The metal extraction yields highlighted the effectiveness of that strategy in comparison with direct extraction from the uncombusted EVA residues. Processing 100 Kg of crushed material, 0.03 Kg of Ag, 45.5 Kg of high value glass, 10 Kg of Al scraps and 1.2 Kg of metallic filaments can be recovered. Thanks to the optimization the recycling rate of the implemented process grew up to 82% (75% during demonstration of the basic Photolife process), while the recovery was estimated at 94%. Remarkably, these rates get over with EU Directive
Beschreibung:Date Completed 10.02.2021
Date Revised 10.02.2021
published: Print-Electronic
Citation Status MEDLINE
ISSN:1879-2456
DOI:10.1016/j.wasman.2020.12.037