Transferable Interactiveness Knowledge for Human-Object Interaction Detection

Human-object interaction (HOI) Detection is an important problem to understand how humans interact with objects. In this paper, we explore Interactiveness Knowledge which indicates whether human and object interact with each other or not. We found that interactiveness knowledge can be learned across...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 44(2022), 7 vom: 25. Juli, Seite 3870-3882
1. Verfasser: Li, Yong-Lu (VerfasserIn)
Weitere Verfasser: Liu, Xinpeng, Wu, Xiaoqian, Huang, Xijie, Xu, Liang, Lu, Cewu
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM320551563
003 DE-627
005 20231225173825.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2021.3054048  |2 doi 
028 5 2 |a pubmed24n1068.xml 
035 |a (DE-627)NLM320551563 
035 |a (NLM)33493110 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Li, Yong-Lu  |e verfasserin  |4 aut 
245 1 0 |a Transferable Interactiveness Knowledge for Human-Object Interaction Detection 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 08.06.2022 
500 |a Date Revised 09.07.2022 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Human-object interaction (HOI) Detection is an important problem to understand how humans interact with objects. In this paper, we explore Interactiveness Knowledge which indicates whether human and object interact with each other or not. We found that interactiveness knowledge can be learned across HOI datasets and alleviate the gap between diverse HOI category settings. Our core idea is to exploit an Interactiveness Network to learn the general interactiveness knowledge from multiple HOI datasets and perform Non-Interaction Suppression before HOI classification in inference. On account of the generalization of interactiveness, interactiveness network is a transferable knowledge learner and can be cooperated with any HOI detection models to achieve desirable results. We utilize the human instance and body part features together to learn the interactiveness in hierarchical paradigm, i.e., instance-level and body part-level interactivenesses. Thereafter, a consistency task is proposed to guide the learning and extract deeper interactive visual clues. We extensively evaluate the proposed method on HICO-DET, V-COCO, and a newly constructed HAKE-HOI dataset. With the learned interactiveness, our method outperforms state-of-the-art HOI detection methods, verifying its efficacy and flexibility. Code is available at https://github.com/DirtyHarryLYL/Transferable-Interactiveness-Network 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Liu, Xinpeng  |e verfasserin  |4 aut 
700 1 |a Wu, Xiaoqian  |e verfasserin  |4 aut 
700 1 |a Huang, Xijie  |e verfasserin  |4 aut 
700 1 |a Xu, Liang  |e verfasserin  |4 aut 
700 1 |a Lu, Cewu  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 44(2022), 7 vom: 25. Juli, Seite 3870-3882  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:44  |g year:2022  |g number:7  |g day:25  |g month:07  |g pages:3870-3882 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2021.3054048  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 44  |j 2022  |e 7  |b 25  |c 07  |h 3870-3882