|
|
|
|
LEADER |
01000caa a22002652 4500 |
001 |
NLM320538982 |
003 |
DE-627 |
005 |
20241013231814.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2021 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.202006221
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1566.xml
|
035 |
|
|
|a (DE-627)NLM320538982
|
035 |
|
|
|a (NLM)33491816
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Xu, Yazhi
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Materials Screening for Disorder-Controlled Chalcogenide Crystals for Phase-Change Memory Applications
|
264 |
|
1 |
|c 2021
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 13.10.2024
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2021 The Authors. Advanced Materials published by Wiley-VCH GmbH.
|
520 |
|
|
|a Tailoring the degree of disorder in chalcogenide phase-change materials (PCMs) plays an essential role in nonvolatile memory devices and neuro-inspired computing. Upon rapid crystallization from the amorphous phase, the flagship Ge-Sb-Te PCMs form metastable rocksalt-like structures with an unconventionally high concentration of vacancies, which results in disordered crystals exhibiting Anderson-insulating transport behavior. Here, ab initio simulations and transport experiments are combined to extend these concepts to the parent compound of Ge-Sb-Te alloys, viz., binary Sb2 Te3 , in the metastable rocksalt-type modification. Then a systematic computational screening over a wide range of homologous, binary and ternary chalcogenides, elucidating the critical factors that affect the stability of the rocksalt structure is carried out. The findings vastly expand the family of disorder-controlled main-group chalcogenides toward many more compositions with a tunable bandgap size for demanding phase-change applications, as well as a varying strength of spin-orbit interaction for the exploration of potential topological Anderson insulators
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Anderson insulators
|
650 |
|
4 |
|a metal-insulator transitions
|
650 |
|
4 |
|a neuromorphic computing
|
650 |
|
4 |
|a phase-change materials
|
700 |
1 |
|
|a Wang, Xudong
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhang, Wei
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Schäfer, Lisa
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Reindl, Johannes
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Vom Bruch, Felix
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhou, Yuxing
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Evang, Valentin
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wang, Jiang-Jing
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Deringer, Volker L
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Ma, En
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wuttig, Matthias
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Mazzarello, Riccardo
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 33(2021), 9 vom: 15. März, Seite e2006221
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g volume:33
|g year:2021
|g number:9
|g day:15
|g month:03
|g pages:e2006221
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202006221
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 33
|j 2021
|e 9
|b 15
|c 03
|h e2006221
|