Part-Object Relational Visual Saliency

Recent years have witnessed a big leap in automatic visual saliency detection attributed to advances in deep learning, especially Convolutional Neural Networks (CNNs). However, inferring the saliency of each image part separately, as was adopted by most CNNs methods, inevitably leads to an incomplet...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 44(2022), 7 vom: 22. Juli, Seite 3688-3704
1. Verfasser: Liu, Yi (VerfasserIn)
Weitere Verfasser: Zhang, Dingwen, Zhang, Qiang, Han, Jungong
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM320439380
003 DE-627
005 20231225173603.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2021.3053577  |2 doi 
028 5 2 |a pubmed24n1068.xml 
035 |a (DE-627)NLM320439380 
035 |a (NLM)33481705 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Liu, Yi  |e verfasserin  |4 aut 
245 1 0 |a Part-Object Relational Visual Saliency 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 08.06.2022 
500 |a Date Revised 09.07.2022 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Recent years have witnessed a big leap in automatic visual saliency detection attributed to advances in deep learning, especially Convolutional Neural Networks (CNNs). However, inferring the saliency of each image part separately, as was adopted by most CNNs methods, inevitably leads to an incomplete segmentation of the salient object. In this paper, we describe how to use the property of part-object relations endowed by the Capsule Network (CapsNet) to solve the problems that fundamentally hinge on relational inference for visual saliency detection. Concretely, we put in place a two-stream strategy, termed Two-Stream Part-Object RelaTional Network (TSPORTNet), to implement CapsNet, aiming to reduce both the network complexity and the possible redundancy during capsule routing. Additionally, taking into account the correlations of capsule types from the preceding training images, a correlation-aware capsule routing algorithm is developed for more accurate capsule assignments at the training stage, which also speeds up the training dramatically. By exploring part-object relationships, TSPORTNet produces a capsule wholeness map, which in turn aids multi-level features in generating the final saliency map. Experimental results on five widely-used benchmarks show that our framework consistently achieves state-of-the-art performance. The code can be found on https://github.com/liuyi1989/TSPORTNet 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Zhang, Dingwen  |e verfasserin  |4 aut 
700 1 |a Zhang, Qiang  |e verfasserin  |4 aut 
700 1 |a Han, Jungong  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 44(2022), 7 vom: 22. Juli, Seite 3688-3704  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:44  |g year:2022  |g number:7  |g day:22  |g month:07  |g pages:3688-3704 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2021.3053577  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 44  |j 2022  |e 7  |b 22  |c 07  |h 3688-3704