Deep Likelihood Network for Image Restoration With Multiple Degradation Levels

Convolutional neural networks have been proven effective in a variety of image restoration tasks. Most state-of-the-art solutions, however, are trained using images with a single particular degradation level, and their performance deteriorates drastically when applied to other degradation settings....

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 30(2021) vom: 21., Seite 2669-2681
1. Verfasser: Guo, Yiwen (VerfasserIn)
Weitere Verfasser: Lu, Ming, Zuo, Wangmeng, Zhang, Changshui, Chen, Yurong
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM320385779
003 DE-627
005 20231225173447.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2021.3051767  |2 doi 
028 5 2 |a pubmed24n1067.xml 
035 |a (DE-627)NLM320385779 
035 |a (NLM)33476270 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Guo, Yiwen  |e verfasserin  |4 aut 
245 1 0 |a Deep Likelihood Network for Image Restoration With Multiple Degradation Levels 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 08.02.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Convolutional neural networks have been proven effective in a variety of image restoration tasks. Most state-of-the-art solutions, however, are trained using images with a single particular degradation level, and their performance deteriorates drastically when applied to other degradation settings. In this paper, we propose deep likelihood network (DL-Net), aiming at generalizing off-the-shelf image restoration networks to succeed over a spectrum of degradation levels. We slightly modify an off-the-shelf network by appending a simple recursive module, which is derived from a fidelity term, for disentangling the computation for multiple degradation levels. Extensive experimental results on image inpainting, interpolation, and super-resolution show the effectiveness of our DL-Net 
650 4 |a Journal Article 
700 1 |a Lu, Ming  |e verfasserin  |4 aut 
700 1 |a Zuo, Wangmeng  |e verfasserin  |4 aut 
700 1 |a Zhang, Changshui  |e verfasserin  |4 aut 
700 1 |a Chen, Yurong  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 30(2021) vom: 21., Seite 2669-2681  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:30  |g year:2021  |g day:21  |g pages:2669-2681 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2021.3051767  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2021  |b 21  |h 2669-2681