Deep Likelihood Network for Image Restoration With Multiple Degradation Levels

Convolutional neural networks have been proven effective in a variety of image restoration tasks. Most state-of-the-art solutions, however, are trained using images with a single particular degradation level, and their performance deteriorates drastically when applied to other degradation settings....

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 30(2021) vom: 21., Seite 2669-2681
Auteur principal: Guo, Yiwen (Auteur)
Autres auteurs: Lu, Ming, Zuo, Wangmeng, Zhang, Changshui, Chen, Yurong
Format: Article en ligne
Langue:English
Publié: 2021
Accès à la collection:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Sujets:Journal Article
Description
Résumé:Convolutional neural networks have been proven effective in a variety of image restoration tasks. Most state-of-the-art solutions, however, are trained using images with a single particular degradation level, and their performance deteriorates drastically when applied to other degradation settings. In this paper, we propose deep likelihood network (DL-Net), aiming at generalizing off-the-shelf image restoration networks to succeed over a spectrum of degradation levels. We slightly modify an off-the-shelf network by appending a simple recursive module, which is derived from a fidelity term, for disentangling the computation for multiple degradation levels. Extensive experimental results on image inpainting, interpolation, and super-resolution show the effectiveness of our DL-Net
Description:Date Revised 08.02.2021
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1941-0042
DOI:10.1109/TIP.2021.3051767