Deep Likelihood Network for Image Restoration With Multiple Degradation Levels
Convolutional neural networks have been proven effective in a variety of image restoration tasks. Most state-of-the-art solutions, however, are trained using images with a single particular degradation level, and their performance deteriorates drastically when applied to other degradation settings....
Publié dans: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 30(2021) vom: 21., Seite 2669-2681 |
---|---|
Auteur principal: | |
Autres auteurs: | , , , |
Format: | Article en ligne |
Langue: | English |
Publié: |
2021
|
Accès à la collection: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society |
Sujets: | Journal Article |
Résumé: | Convolutional neural networks have been proven effective in a variety of image restoration tasks. Most state-of-the-art solutions, however, are trained using images with a single particular degradation level, and their performance deteriorates drastically when applied to other degradation settings. In this paper, we propose deep likelihood network (DL-Net), aiming at generalizing off-the-shelf image restoration networks to succeed over a spectrum of degradation levels. We slightly modify an off-the-shelf network by appending a simple recursive module, which is derived from a fidelity term, for disentangling the computation for multiple degradation levels. Extensive experimental results on image inpainting, interpolation, and super-resolution show the effectiveness of our DL-Net |
---|---|
Description: | Date Revised 08.02.2021 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1941-0042 |
DOI: | 10.1109/TIP.2021.3051767 |