Semi-Supervised Low-Rank Semantics Grouping for Zero-Shot Learning

Zero-shot learning has received great interest in visual recognition community. It aims to classify new unobserved classes based on the model learned from observed classes. Most zero-shot learning methods require pre-provided semantic attributes as the mid-level information to discover the intrinsic...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 30(2021) vom: 01., Seite 2207-2219
1. Verfasser: Xu, Bingrong (VerfasserIn)
Weitere Verfasser: Zeng, Zhigang, Lian, Cheng, Ding, Zhengming
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM320341275
003 DE-627
005 20231225173352.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2021.3050677  |2 doi 
028 5 2 |a pubmed24n1067.xml 
035 |a (DE-627)NLM320341275 
035 |a (NLM)33471756 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Xu, Bingrong  |e verfasserin  |4 aut 
245 1 0 |a Semi-Supervised Low-Rank Semantics Grouping for Zero-Shot Learning 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 27.01.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Zero-shot learning has received great interest in visual recognition community. It aims to classify new unobserved classes based on the model learned from observed classes. Most zero-shot learning methods require pre-provided semantic attributes as the mid-level information to discover the intrinsic relationship between observed and unobserved categories. However, it is impractical to annotate the enriched label information of the observed objects in real-world applications, which would extremely hurt the performance of zero-shot learning with limited labeled seen data. To overcome this obstacle, we develop a Low-rank Semantics Grouping (LSG) method for zero-shot learning in a semi-supervised fashion, which attempts to jointly uncover the intrinsic relationship across visual and semantic information and recover the missing label information from seen classes. Specifically, the visual-semantic encoder is utilized as projection model, low-rank semantic grouping scheme is explored to capture the intrinsic attributes correlations and a Laplacian graph is constructed from the visual features to guide the label propagation from labeled instances to unlabeled ones. Experiments have been conducted on several standard zero-shot learning benchmarks, which demonstrate the efficiency of the proposed method by comparing with state-of-the-art methods. Our model is robust to different levels of missing label settings. Also visualized results prove that the LSG can distinguish the test unseen classes more discriminative 
650 4 |a Journal Article 
700 1 |a Zeng, Zhigang  |e verfasserin  |4 aut 
700 1 |a Lian, Cheng  |e verfasserin  |4 aut 
700 1 |a Ding, Zhengming  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 30(2021) vom: 01., Seite 2207-2219  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:30  |g year:2021  |g day:01  |g pages:2207-2219 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2021.3050677  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2021  |b 01  |h 2207-2219