Learning to Zoom-In via Learning to Zoom-Out : Real-World Super-Resolution by Generating and Adapting Degradation
Most learning-based super-resolution (SR) methods aim to recover high-resolution (HR) image from a given low-resolution (LR) image via learning on LR-HR image pairs. The SR methods learned on synthetic data do not perform well in real-world, due to the domain gap between the artificially synthesized...
Veröffentlicht in: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 30(2021) vom: 01., Seite 2947-2962 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2021
|
Zugriff auf das übergeordnete Werk: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society |
Schlagworte: | Journal Article |
Online verfügbar |
Volltext |