Learning to Zoom-In via Learning to Zoom-Out : Real-World Super-Resolution by Generating and Adapting Degradation

Most learning-based super-resolution (SR) methods aim to recover high-resolution (HR) image from a given low-resolution (LR) image via learning on LR-HR image pairs. The SR methods learned on synthetic data do not perform well in real-world, due to the domain gap between the artificially synthesized...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 30(2021) vom: 01., Seite 2947-2962
1. Verfasser: Sun, Wei (VerfasserIn)
Weitere Verfasser: Gong, Dong, Shi, Qinfeng, van den Hengel, Anton, Zhang, Yanning
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article