An Air-Stable and Li-Metal-Compatible Glass-Ceramic Electrolyte enabling High-Performance All-Solid-State Li Metal Batteries

© 2021 Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 33(2021), 8 vom: 30. Feb., Seite e2006577
1. Verfasser: Zhao, Feipeng (VerfasserIn)
Weitere Verfasser: Alahakoon, Sandamini H, Adair, Keegan, Zhang, Shumin, Xia, Wei, Li, Weihan, Yu, Chuang, Feng, Renfei, Hu, Yongfeng, Liang, Jianwen, Lin, Xiaoting, Zhao, Yang, Yang, Xiaofei, Sham, Tsun-Kong, Huang, Huan, Zhang, Li, Zhao, Shangqian, Lu, Shigang, Huang, Yining, Sun, Xueliang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article Li metal compatibility air-stability all-solid-state Li metal batteries glass-ceramic electrolytes superionic conductors
Beschreibung
Zusammenfassung:© 2021 Wiley-VCH GmbH.
The development of all-solid-state Li metal batteries (ASSLMBs) has attracted significant attention due to their potential to maximize energy density and improved safety compared to the conventional liquid-electrolyte-based Li-ion batteries. However, it is very challenging to fabricate an ideal solid-state electrolyte (SSE) that simultaneously possesses high ionic conductivity, excellent air-stability, and good Li metal compatibility. Herein, a new glass-ceramic Li3.2 P0.8 Sn0.2 S4 (gc-Li3.2 P0.8 Sn0.2 S4 ) SSE is synthesized to satisfy the aforementioned requirements, enabling high-performance ASSLMBs at room temperature (RT). Compared with the conventional Li3 PS4 glass-ceramics, the present gc-Li3.2 P0.8 Sn0.2 S4 SSE with 12% amorphous content has an enlarged unit cell and a high Li+ ion concentration, which leads to 6.2-times higher ionic conductivity (1.21 × 10-3 S cm-1 at RT) after a simple cold sintering process. The (P/Sn)S4 tetrahedron inside the gc-Li3.2 P0.8 Sn0.2 S4 SSE is verified to show a strong resistance toward reaction with H2 O in 5%-humidity air, demonstrating excellent air-stability. Moreover, the gc-Li3.2 P0.8 Sn0.2 S4 SSE triggers the formation of Li-Sn alloys at the Li/SSE interface, serving as an essential component to stabilize the interface and deliver good electrochemical performance in both symmetric and full cells. The discovery of this gc-Li3.2 P0.8 Sn0.2 S4 superionic conductor enriches the choice of advanced SSEs and accelerates the commercialization of ASSLMBs
Beschreibung:Date Revised 22.02.2021
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202006577