Real-time time-dependent density functional theory using density fitting and the continuous fast multipole method

© 2020 The Authors. Journal of Computational Chemistry published by Wiley Periodicals LLC.

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry. - 1984. - 41(2020), 30 vom: 15. Nov., Seite 2573-2582
1. Verfasser: Müller, Carolin (VerfasserIn)
Weitere Verfasser: Sharma, Manas, Sierka, Marek
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:Journal of computational chemistry
Schlagworte:Journal Article continuous fast multipole method density fitting density functional theory electron dynamics real‐time real‐space TDDFT
LEADER 01000naa a22002652 4500
001 NLM320270661
003 DE-627
005 20231225173223.0
007 cr uuu---uuuuu
008 231225s2020 xx |||||o 00| ||eng c
024 7 |a 10.1002/jcc.26412  |2 doi 
028 5 2 |a pubmed24n1067.xml 
035 |a (DE-627)NLM320270661 
035 |a (NLM)33464600 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Müller, Carolin  |e verfasserin  |4 aut 
245 1 0 |a Real-time time-dependent density functional theory using density fitting and the continuous fast multipole method 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 20.01.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2020 The Authors. Journal of Computational Chemistry published by Wiley Periodicals LLC. 
520 |a An implementation of real-time time-dependent density functional theory (RT-TDDFT) within the TURBOMOLE program package is reported using Gaussian-type orbitals as basis functions, second and fourth order Magnus propagator, and the self-consistent field as well as the predictor-corrector time integration schemes. The Coulomb contribution to the Kohn-Sham matrix is calculated combining density fitting approximation and the continuous fast multipole method. Performance of the implementation is benchmarked for molecular systems with different sizes and dimensionalities. For linear alkane chains, the wall time for density matrix time propagation step is comparable to the Kohn-Sham (KS) matrix construction. However, for larger two- and three-dimensional molecules, with up to about 5,000 basis functions, the computational effort of RT-TDDFT calculations is dominated by the KS matrix evaluation. In addition, the maximum time step is evaluated using a set of small molecules of different polarities. The photoabsorption spectra of several molecular systems calculated using RT-TDDFT are compared to those obtained using linear response time-dependent density functional theory and coupled cluster methods 
650 4 |a Journal Article 
650 4 |a continuous fast multipole method 
650 4 |a density fitting 
650 4 |a density functional theory 
650 4 |a electron dynamics 
650 4 |a real‐time real‐space TDDFT 
700 1 |a Sharma, Manas  |e verfasserin  |4 aut 
700 1 |a Sierka, Marek  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of computational chemistry  |d 1984  |g 41(2020), 30 vom: 15. Nov., Seite 2573-2582  |w (DE-627)NLM098138448  |x 1096-987X  |7 nnns 
773 1 8 |g volume:41  |g year:2020  |g number:30  |g day:15  |g month:11  |g pages:2573-2582 
856 4 0 |u http://dx.doi.org/10.1002/jcc.26412  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 41  |j 2020  |e 30  |b 15  |c 11  |h 2573-2582