Automatic Detection of Atherosclerotic Plaque and Calcification From Intravascular Ultrasound Images by Using Deep Convolutional Neural Networks

Atherosclerosis is the major cause of cardiovascular diseases (CVDs). Intravascular ultrasound (IVUS) is a common imaging modality for diagnosing CVDs. However, an efficient analyzer for IVUS image segmentation is required for assisting cardiologists. In this study, an end-to-end deep-learning convo...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on ultrasonics, ferroelectrics, and frequency control. - 1986. - 68(2021), 5 vom: 18. Mai, Seite 1762-1772
Auteur principal: Li, Yi-Chen (Auteur)
Autres auteurs: Shen, Thau-Yun, Chen, Chien-Cheng, Chang, Wei-Ting, Lee, Po-Yang, Huang, Chih-Chung Johnson
Format: Article en ligne
Langue:English
Publié: 2021
Accès à la collection:IEEE transactions on ultrasonics, ferroelectrics, and frequency control
Sujets:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000caa a22002652c 4500
001 NLM320229513
003 DE-627
005 20250228190149.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1109/TUFFC.2021.3052486  |2 doi 
028 5 2 |a pubmed25n1067.xml 
035 |a (DE-627)NLM320229513 
035 |a (NLM)33460377 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Li, Yi-Chen  |e verfasserin  |4 aut 
245 1 0 |a Automatic Detection of Atherosclerotic Plaque and Calcification From Intravascular Ultrasound Images by Using Deep Convolutional Neural Networks 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 25.10.2021 
500 |a Date Revised 25.10.2021 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Atherosclerosis is the major cause of cardiovascular diseases (CVDs). Intravascular ultrasound (IVUS) is a common imaging modality for diagnosing CVDs. However, an efficient analyzer for IVUS image segmentation is required for assisting cardiologists. In this study, an end-to-end deep-learning convolutional neural network was developed for automatically detecting media-adventitia borders, luminal regions, and calcified plaque in IVUS images. A total of 713 grayscale IVUS images from 18 patients were used as training data for the proposed deep-learning model. The model is constructed using the three modified U-Nets and combined with the concept of cascaded networks to prevent errors in the detection of calcification owing to the interference of pixels outside the plaque regions. Three loss functions (Dice, Tversky, and focal loss) with various characteristics were tested to determine the best setting for the proposed model. The efficacy of the deep-learning model was evaluated by analyzing precision-recall curve. The average precision (AP), Dice score coefficient, precision, sensitivity, and specificity of the predicted and ground truth results were then compared. All training processes were validated using leave-one-subject-out cross-validation. The experimental results showed that the proposed deep-learning model exhibits high performance in segmenting the media-adventitia layers and luminal regions for all loss functions, with all tested metrics being higher than 0.90. For locating calcified tissues, the best result was obtained when the focal loss function was applied to the proposed model, with an AP of 0.73; however, the prediction efficacy was affected by the proportion of calcified tissues within the plaque region when the focal loss function was employed. Compared with commercial software, the proposed method exhibited high accuracy in segmenting IVUS images in some special cases, such as when shadow artifacts or side vessels surrounded the target vessel 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Shen, Thau-Yun  |e verfasserin  |4 aut 
700 1 |a Chen, Chien-Cheng  |e verfasserin  |4 aut 
700 1 |a Chang, Wei-Ting  |e verfasserin  |4 aut 
700 1 |a Lee, Po-Yang  |e verfasserin  |4 aut 
700 1 |a Huang, Chih-Chung Johnson  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on ultrasonics, ferroelectrics, and frequency control  |d 1986  |g 68(2021), 5 vom: 18. Mai, Seite 1762-1772  |w (DE-627)NLM098181017  |x 1525-8955  |7 nnas 
773 1 8 |g volume:68  |g year:2021  |g number:5  |g day:18  |g month:05  |g pages:1762-1772 
856 4 0 |u http://dx.doi.org/10.1109/TUFFC.2021.3052486  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_22 
912 |a GBV_ILN_24 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 68  |j 2021  |e 5  |b 18  |c 05  |h 1762-1772