DVG-Face : Dual Variational Generation for Heterogeneous Face Recognition

Heterogeneous face recognition (HFR) refers to matching cross-domain faces and plays a crucial role in public security. Nevertheless, HFR is confronted with challenges from large domain discrepancy and insufficient heterogeneous data. In this paper, we formulate HFR as a dual generation problem, and...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 44(2022), 6 vom: 18. Juni, Seite 2938-2952
1. Verfasser: Fu, Chaoyou (VerfasserIn)
Weitere Verfasser: Wu, Xiang, Hu, Yibo, Huang, Huaibo, He, Ran
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM320229416
003 DE-627
005 20231225173130.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2021.3052549  |2 doi 
028 5 2 |a pubmed24n1067.xml 
035 |a (DE-627)NLM320229416 
035 |a (NLM)33460368 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Fu, Chaoyou  |e verfasserin  |4 aut 
245 1 0 |a DVG-Face  |b Dual Variational Generation for Heterogeneous Face Recognition 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 09.05.2022 
500 |a Date Revised 09.07.2022 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Heterogeneous face recognition (HFR) refers to matching cross-domain faces and plays a crucial role in public security. Nevertheless, HFR is confronted with challenges from large domain discrepancy and insufficient heterogeneous data. In this paper, we formulate HFR as a dual generation problem, and tackle it via a novel dual variational generation (DVG-Face) framework. Specifically, a dual variational generator is elaborately designed to learn the joint distribution of paired heterogeneous images. However, the small-scale paired heterogeneous training data may limit the identity diversity of sampling. In order to break through the limitation, we propose to integrate abundant identity information of large-scale visible data into the joint distribution. Furthermore, a pairwise identity preserving loss is imposed on the generated paired heterogeneous images to ensure their identity consistency. As a consequence, massive new diverse paired heterogeneous images with the same identity can be generated from noises. The identity consistency and identity diversity properties allow us to employ these generated images to train the HFR network via a contrastive learning mechanism, yielding both domain-invariant and discriminative embedding features. Concretely, the generated paired heterogeneous images are regarded as positive pairs, and the images obtained from different samplings are considered as negative pairs. Our method achieves superior performances over state-of-the-art methods on seven challenging databases belonging to five HFR tasks, including NIR-VIS, Sketch-Photo, Profile-Frontal Photo, Thermal-VIS, and ID-Camera 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Wu, Xiang  |e verfasserin  |4 aut 
700 1 |a Hu, Yibo  |e verfasserin  |4 aut 
700 1 |a Huang, Huaibo  |e verfasserin  |4 aut 
700 1 |a He, Ran  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 44(2022), 6 vom: 18. Juni, Seite 2938-2952  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:44  |g year:2022  |g number:6  |g day:18  |g month:06  |g pages:2938-2952 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2021.3052549  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 44  |j 2022  |e 6  |b 18  |c 06  |h 2938-2952