Shedding light on the dark side of xanthophyll cycles

© 2021 The Authors New Phytologist © 2021 New Phytologist Foundation.

Bibliographische Detailangaben
Veröffentlicht in:The New phytologist. - 1984. - 230(2021), 4 vom: 26. Mai, Seite 1336-1344
1. Verfasser: Fernández-Marín, Beatriz (VerfasserIn)
Weitere Verfasser: Roach, Thomas, Verhoeven, Amy, García-Plazaola, José Ignacio
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:The New phytologist
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Review darkness desiccation freezing heat stress violaxanthin xanthophyll cycle mehr... zeaxanthin epoxidase Xanthophylls Zeaxanthins Lutein X72A60C9MT
Beschreibung
Zusammenfassung:© 2021 The Authors New Phytologist © 2021 New Phytologist Foundation.
Xanthophyll cycles are broadly important in photoprotection, and the reversible de-epoxidation of xanthophylls typically occurs in excess light conditions. However, as presented in this review, compiling evidence in a wide range of photosynthetic eukaryotes shows that xanthophyll de-epoxidation also occurs under diverse abiotic stress conditions in darkness. Light-driven photochemistry usually leads to the pH changes that activate de-epoxidases (e.g. violaxanthin de-epoxidase), but in darkness alternative electron transport pathways and luminal domains enriched in monogalactosyl diacyl glycerol (which enhance de-epoxidase activity) likely enable de-epoxidation. Another 'dark side' to sustaining xanthophyll de-epoxidation is inactivation and/or degradation of epoxidases (e.g. zeaxanthin epoxidase). There are obvious benefits of such activity regarding stress tolerance, and indeed this phenomenon has only been reported in stressful conditions. However, more research is required to unravel the mechanisms and understand the physiological roles of dark-induced formation of zeaxanthin. Notably, the de-epoxidation of violaxanthin to antheraxanthin and zeaxanthin in darkness is still a frequently ignored process, perhaps because it questions a previous paradigm. With that in mind, this review seeks to shed some light on the dark side of xanthophyll de-epoxidation, and point out areas for future work
Beschreibung:Date Completed 14.05.2021
Date Revised 14.05.2021
published: Print-Electronic
Citation Status MEDLINE
ISSN:1469-8137
DOI:10.1111/nph.17191