Panoptic Feature Fusion Net : A Novel Instance Segmentation Paradigm for Biomedical and Biological Images

Instance segmentation is an important task for biomedical and biological image analysis. Due to the complicated background components, the high variability of object appearances, numerous overlapping objects, and ambiguous object boundaries, this task still remains challenging. Recently, deep learni...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 30(2021) vom: 03., Seite 2045-2059
1. Verfasser: Liu, Dongnan (VerfasserIn)
Weitere Verfasser: Zhang, Donghao, Song, Yang, Huang, Heng, Cai, Weidong
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM320130665
003 DE-627
005 20250228183741.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2021.3050668  |2 doi 
028 5 2 |a pubmed25n1066.xml 
035 |a (DE-627)NLM320130665 
035 |a (NLM)33449878 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Liu, Dongnan  |e verfasserin  |4 aut 
245 1 0 |a Panoptic Feature Fusion Net  |b A Novel Instance Segmentation Paradigm for Biomedical and Biological Images 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 23.07.2021 
500 |a Date Revised 23.07.2021 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Instance segmentation is an important task for biomedical and biological image analysis. Due to the complicated background components, the high variability of object appearances, numerous overlapping objects, and ambiguous object boundaries, this task still remains challenging. Recently, deep learning based methods have been widely employed to solve these problems and can be categorized into proposal-free and proposal-based methods. However, both proposal-free and proposal-based methods suffer from information loss, as they focus on either global-level semantic or local-level instance features. To tackle this issue, we present a Panoptic Feature Fusion Net (PFFNet) that unifies the semantic and instance features in this work. Specifically, our proposed PFFNet contains a residual attention feature fusion mechanism to incorporate the instance prediction with the semantic features, in order to facilitate the semantic contextual information learning in the instance branch. Then, a mask quality sub-branch is designed to align the confidence score of each object with the quality of the mask prediction. Furthermore, a consistency regularization mechanism is designed between the semantic segmentation tasks in the semantic and instance branches, for the robust learning of both tasks. Extensive experiments demonstrate the effectiveness of our proposed PFFNet, which outperforms several state-of-the-art methods on various biomedical and biological datasets 
650 4 |a Journal Article 
700 1 |a Zhang, Donghao  |e verfasserin  |4 aut 
700 1 |a Song, Yang  |e verfasserin  |4 aut 
700 1 |a Huang, Heng  |e verfasserin  |4 aut 
700 1 |a Cai, Weidong  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 30(2021) vom: 03., Seite 2045-2059  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnas 
773 1 8 |g volume:30  |g year:2021  |g day:03  |g pages:2045-2059 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2021.3050668  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2021  |b 03  |h 2045-2059