Dynamic Liquid Gating Artificially Spinning System for Self-Evolving Topographies and Microstructures

Developments in spinning systems have triggered revolutions ranging from bioengineering tissue scaffolds to emerging smart wearable fabrics, but the structures of the spinning fibers are usually limited by intrinsic channel configurations and the "dead" nozzle's geometry. In contrast,...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 37(2021), 4 vom: 02. Feb., Seite 1438-1445
1. Verfasser: Gao, Wei (VerfasserIn)
Weitere Verfasser: Lei, Zhouyue, Liu, Xiangdong, Chen, Yongping
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM320114430
003 DE-627
005 20231225172904.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1021/acs.langmuir.0c02910  |2 doi 
028 5 2 |a pubmed24n1067.xml 
035 |a (DE-627)NLM320114430 
035 |a (NLM)33448224 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Gao, Wei  |e verfasserin  |4 aut 
245 1 0 |a Dynamic Liquid Gating Artificially Spinning System for Self-Evolving Topographies and Microstructures 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 09.02.2021 
500 |a Date Revised 09.02.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Developments in spinning systems have triggered revolutions ranging from bioengineering tissue scaffolds to emerging smart wearable fabrics, but the structures of the spinning fibers are usually limited by intrinsic channel configurations and the "dead" nozzle's geometry. In contrast, natural living systems, such as a spider spinning apparatus, use a "live" gate to coordinate microstructures via shearing and expanding at both axial and radial directions. Herein, for the first time, we introduce a dynamic liquid gating effect in artificial systems to mimic the spinning in biological organisms. Theoretical modeling and experimental regime diagram demonstrate that the topographies and microstructures of the fibers self-evolve after passing through the liquid gate and they could be tuned over a wide range, which successfully exceeds the limits of current "dead" spinning channels. In particular, fibers with a periodic spindle-knot structure self-evolve from a water gate and show fast directional water collecting and intelligent sensing ability. The liquid gating design not only sheds new light on fiber structure control in multiple spatiotemporal dimensions but also contributes to the development of high-performance fibers with sophisticated functions 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Lei, Zhouyue  |e verfasserin  |4 aut 
700 1 |a Liu, Xiangdong  |e verfasserin  |4 aut 
700 1 |a Chen, Yongping  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Langmuir : the ACS journal of surfaces and colloids  |d 1992  |g 37(2021), 4 vom: 02. Feb., Seite 1438-1445  |w (DE-627)NLM098181009  |x 1520-5827  |7 nnns 
773 1 8 |g volume:37  |g year:2021  |g number:4  |g day:02  |g month:02  |g pages:1438-1445 
856 4 0 |u http://dx.doi.org/10.1021/acs.langmuir.0c02910  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_22 
912 |a GBV_ILN_350 
912 |a GBV_ILN_721 
951 |a AR 
952 |d 37  |j 2021  |e 4  |b 02  |c 02  |h 1438-1445