Iterative model predictions for wildlife populations impacted by rapid climate change

© 2021 The Authors. Global Change Biology published by John Wiley & Sons Ltd.

Bibliographische Detailangaben
Veröffentlicht in:Global change biology. - 1999. - 27(2021), 8 vom: 12. Apr., Seite 1547-1559
1. Verfasser: Marolla, Filippo (VerfasserIn)
Weitere Verfasser: Henden, John-André, Fuglei, Eva, Pedersen, Åshild Ø, Itkin, Mikhail, Ims, Rolf A
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Global change biology
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Arctic Svalbard climate change management near-term forecasting prediction ptarmigan winter temperature
LEADER 01000naa a22002652 4500
001 NLM320112942
003 DE-627
005 20231225172902.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1111/gcb.15518  |2 doi 
028 5 2 |a pubmed24n1067.xml 
035 |a (DE-627)NLM320112942 
035 |a (NLM)33448074 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Marolla, Filippo  |e verfasserin  |4 aut 
245 1 0 |a Iterative model predictions for wildlife populations impacted by rapid climate change 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 23.04.2021 
500 |a Date Revised 23.04.2021 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2021 The Authors. Global Change Biology published by John Wiley & Sons Ltd. 
520 |a To improve understanding and management of the consequences of current rapid environmental change, ecologists advocate using long-term monitoring data series to generate iterative near-term predictions of ecosystem responses. This approach allows scientific evidence to increase rapidly and management strategies to be tailored simultaneously. Iterative near-term forecasting may therefore be particularly useful for adaptive monitoring of ecosystems subjected to rapid climate change. Here, we show how to implement near-term forecasting in the case of a harvested population of rock ptarmigan in high-arctic Svalbard, a region subjected to the largest and most rapid climate change on Earth. We fitted state-space models to ptarmigan counts from point transect distance sampling during 2005-2019 and developed two types of predictions: (1) explanatory predictions to quantify the effect of potential drivers of ptarmigan population dynamics, and (2) anticipatory predictions to assess the ability of candidate models of increasing complexity to forecast next-year population density. Based on the explanatory predictions, we found that a recent increasing trend in the Svalbard rock ptarmigan population can be attributed to major changes in winter climate. Currently, a strong positive effect of increasing average winter temperature on ptarmigan population growth outweighs the negative impacts of other manifestations of climate change such as rain-on-snow events. Moreover, the ptarmigan population may compensate for current harvest levels. Based on the anticipatory predictions, the near-term forecasting ability of the models improved nonlinearly with the length of the time series, but yielded good forecasts even based on a short time series. The inclusion of ecological predictors improved forecasts of sharp changes in next-year population density, demonstrating the value of ecosystem-based monitoring. Overall, our study illustrates the power of integrating near-term forecasting in monitoring systems to aid understanding and management of wildlife populations exposed to rapid climate change. We provide recommendations for how to improve this approach 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a Arctic 
650 4 |a Svalbard 
650 4 |a climate change 
650 4 |a management 
650 4 |a near-term forecasting 
650 4 |a prediction 
650 4 |a ptarmigan 
650 4 |a winter temperature 
700 1 |a Henden, John-André  |e verfasserin  |4 aut 
700 1 |a Fuglei, Eva  |e verfasserin  |4 aut 
700 1 |a Pedersen, Åshild Ø  |e verfasserin  |4 aut 
700 1 |a Itkin, Mikhail  |e verfasserin  |4 aut 
700 1 |a Ims, Rolf A  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Global change biology  |d 1999  |g 27(2021), 8 vom: 12. Apr., Seite 1547-1559  |w (DE-627)NLM098239996  |x 1365-2486  |7 nnns 
773 1 8 |g volume:27  |g year:2021  |g number:8  |g day:12  |g month:04  |g pages:1547-1559 
856 4 0 |u http://dx.doi.org/10.1111/gcb.15518  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 27  |j 2021  |e 8  |b 12  |c 04  |h 1547-1559