Plant Disease Recognition : A Large-Scale Benchmark Dataset and a Visual Region and Loss Reweighting Approach

Plant disease diagnosis is very critical for agriculture due to its importance for increasing crop production. Recent advances in image processing offer us a new way to solve this issue via visual plant disease analysis. However, there are few works in this area, not to mention systematic researches...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 30(2021) vom: 01., Seite 2003-2015
1. Verfasser: Liu, Xinda (VerfasserIn)
Weitere Verfasser: Min, Weiqing, Mei, Shuhuan, Wang, Lili, Jiang, Shuqiang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM320073912
003 DE-627
005 20231225172811.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2021.3049334  |2 doi 
028 5 2 |a pubmed24n1066.xml 
035 |a (DE-627)NLM320073912 
035 |a (NLM)33444137 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Liu, Xinda  |e verfasserin  |4 aut 
245 1 0 |a Plant Disease Recognition  |b A Large-Scale Benchmark Dataset and a Visual Region and Loss Reweighting Approach 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 23.07.2021 
500 |a Date Revised 23.07.2021 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Plant disease diagnosis is very critical for agriculture due to its importance for increasing crop production. Recent advances in image processing offer us a new way to solve this issue via visual plant disease analysis. However, there are few works in this area, not to mention systematic researches. In this paper, we systematically investigate the problem of visual plant disease recognition for plant disease diagnosis. Compared with other types of images, plant disease images generally exhibit randomly distributed lesions, diverse symptoms and complex backgrounds, and thus are hard to capture discriminative information. To facilitate the plant disease recognition research, we construct a new large-scale plant disease dataset with 271 plant disease categories and 220,592 images. Based on this dataset, we tackle plant disease recognition via reweighting both visual regions and loss to emphasize diseased parts. We first compute the weights of all the divided patches from each image based on the cluster distribution of these patches to indicate the discriminative level of each patch. Then we allocate the weight to each loss for each patch-label pair during weakly-supervised training to enable discriminative disease part learning. We finally extract patch features from the network trained with loss reweighting, and utilize the LSTM network to encode the weighed patch feature sequence into a comprehensive feature representation. Extensive evaluations on this dataset and another public dataset demonstrate the advantage of the proposed method. We expect this research will further the agenda of plant disease recognition in the community of image processing 
650 4 |a Journal Article 
700 1 |a Min, Weiqing  |e verfasserin  |4 aut 
700 1 |a Mei, Shuhuan  |e verfasserin  |4 aut 
700 1 |a Wang, Lili  |e verfasserin  |4 aut 
700 1 |a Jiang, Shuqiang  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 30(2021) vom: 01., Seite 2003-2015  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:30  |g year:2021  |g day:01  |g pages:2003-2015 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2021.3049334  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2021  |b 01  |h 2003-2015