Domain Sorting in Giant Unilamellar Vesicles Adsorbed on Glass

Giant unilamellar vesicles (GUVs) adsorb to a solid surface and rupture to form a planar bilayer patch. These bilayer patches are used to investigate the properties and functions of biological membranes. Therefore, it is crucial to understand the mechanisms of GUV adsorption. In this study, we inves...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 37(2021), 3 vom: 26. Jan., Seite 1082-1088
1. Verfasser: Kataoka-Hamai, Chiho (VerfasserIn)
Weitere Verfasser: Kawakami, Kohsaku
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Giant unilamellar vesicles (GUVs) adsorb to a solid surface and rupture to form a planar bilayer patch. These bilayer patches are used to investigate the properties and functions of biological membranes. Therefore, it is crucial to understand the mechanisms of GUV adsorption. In this study, we investigate the adsorption of phase-separated GUVs on glass using fluorescence microscopy. GUVs containing liquid-ordered (Lo) and liquid-disordered (Ld) phases underwent domain sorting after adsorption. The Ld domain in the unbound region migrated to the highly curved region near the edge of the adsorbed region. Additionally, the Lo phase grew linearly along the edge of the adsorbed region, creating a thin ring-like domain. After the domain sorting event, the GUV ruptured to form a planar bilayer patch with circular-patterned domains in the initially adsorbed area. We found that domain sorting was promoted by increasing the extent of GUV deformation. These results suggest that both the Ld and Lo domains are reorganized for stabilizing the curved bilayer region in adsorbed GUVs
Beschreibung:Date Completed 02.02.2021
Date Revised 02.02.2021
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.0c02843