Nocal-Siam : Refining Visual Features and Response With Advanced Non-Local Blocks for Real-Time Siamese Tracking

Siamese trackers contain two core stages, i.e., learning the features of both target and search inputs at first and then calculating response maps via the cross-correlation operation, which can also be used for regression and classification to construct typical one-shot detection tracking framework....

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 30(2021) vom: 13., Seite 2656-2668
1. Verfasser: Tan, Huibin (VerfasserIn)
Weitere Verfasser: Zhang, Xiang, Zhang, Zhipeng, Lan, Long, Zhang, Wenju, Luo, Zhigang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM320031519
003 DE-627
005 20231225172718.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2021.3049970  |2 doi 
028 5 2 |a pubmed24n1066.xml 
035 |a (DE-627)NLM320031519 
035 |a (NLM)33439844 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Tan, Huibin  |e verfasserin  |4 aut 
245 1 0 |a Nocal-Siam  |b Refining Visual Features and Response With Advanced Non-Local Blocks for Real-Time Siamese Tracking 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 08.02.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Siamese trackers contain two core stages, i.e., learning the features of both target and search inputs at first and then calculating response maps via the cross-correlation operation, which can also be used for regression and classification to construct typical one-shot detection tracking framework. Although they have drawn continuous interest from the visual tracking community due to the proper trade-off between accuracy and speed, both stages are easily sensitive to the distracters in search branch, thereby inducing unreliable response positions. To fill this gap, we advance Siamese trackers with two novel non-local blocks named Nocal-Siam, which leverages the long-range dependency property of the non-local attention in a supervised fashion from two aspects. First, a target-aware non-local block (T-Nocal) is proposed for learning the target-guided feature weights, which serve to refine visual features of both target and search branches, and thus effectively suppress noisy distracters. This block reinforces the interplay between both target and search branches in the first stage. Second, we further develop a location-aware non-local block (L-Nocal) to associate multiple response maps, which prevents them inducing diverse candidate target positions in the future coming frame. Experiments on five popular benchmarks show that Nocal-Siam performs favorably against well-behaved counterparts both in quantity and quality 
650 4 |a Journal Article 
700 1 |a Zhang, Xiang  |e verfasserin  |4 aut 
700 1 |a Zhang, Zhipeng  |e verfasserin  |4 aut 
700 1 |a Lan, Long  |e verfasserin  |4 aut 
700 1 |a Zhang, Wenju  |e verfasserin  |4 aut 
700 1 |a Luo, Zhigang  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 30(2021) vom: 13., Seite 2656-2668  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:30  |g year:2021  |g day:13  |g pages:2656-2668 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2021.3049970  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2021  |b 13  |h 2656-2668