Self-Assembled Sandwich-like MXene-Derived Composites as Highly Efficient and Sustainable Catalysts for Wastewater Treatment
Photocatalysts play an increasingly important role in environmental remediation polluted by industrial wastewater. However, the preparation of adsorbents and catalysts with high activity by simple and easy methods is still a great challenge. Here, sandwich-like composite catalyst Cu2O/TiO2/Ti3C2 was...
Veröffentlicht in: | Langmuir : the ACS journal of surfaces and colloids. - 1992. - 37(2021), 3 vom: 26. Jan., Seite 1267-1278 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2021
|
Zugriff auf das übergeordnete Werk: | Langmuir : the ACS journal of surfaces and colloids |
Schlagworte: | Journal Article |
Zusammenfassung: | Photocatalysts play an increasingly important role in environmental remediation polluted by industrial wastewater. However, the preparation of adsorbents and catalysts with high activity by simple and easy methods is still a great challenge. Here, sandwich-like composite catalyst Cu2O/TiO2/Ti3C2 was prepared by an easily available solvent reduction measure for the highly efficient catalytic nitro compounds. In particular, sandwich-like composite catalyst Cu2O/TiO2/Ti3C2 exhibits excellent catalysis for 2-nitroaniline (2-NA) and 4-nitrophenol (4-NP), and its pseudo-first-order reaction rate constants (k) are 0.163 and 0.114 min-1, respectively. Interestingly, even after eight consecutive cycles of catalytic experiments, the conversion rates of catalytic 2-NA and 4-NP are still greater than 95 and 92%, respectively, demonstrating that the obtained catalyst has excellent catalytic capability and a high reutilization rate. The excellent catalytic performances of Cu2O/TiO2/Ti3C2 can be attributed to the fact that Ti3C2 provides a greater reaction site for the formation of Cu2O and reduces the aggregation during the formation of Cu2O by in situ synthesis. Therefore, ternary composite catalyst Cu2O/TiO2/Ti3C2 prepared by solvent reduction not only supplies a technical method for the catalytic reaction of MXene-based material but also lays the foundation for the development of new photocatalysts |
---|---|
Beschreibung: | Date Revised 26.01.2021 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1520-5827 |
DOI: | 10.1021/acs.langmuir.0c03297 |