Salient Object Detection in the Deep Learning Era : An In-Depth Survey

As an essential problem in computer vision, salient object detection (SOD) has attracted an increasing amount of research attention over the years. Recent advances in SOD are predominantly led by deep learning-based solutions (named deep SOD). To enable in-depth understanding of deep SOD, in this pa...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 44(2022), 6 vom: 01. Juni, Seite 3239-3259
1. Verfasser: Wang, Wenguan (VerfasserIn)
Weitere Verfasser: Lai, Qiuxia, Fu, Huazhu, Shen, Jianbing, Ling, Haibin, Yang, Ruigang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Superoxide Dismutase EC 1.15.1.1
LEADER 01000caa a22002652c 4500
001 NLM319974960
003 DE-627
005 20250228175841.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2021.3051099  |2 doi 
028 5 2 |a pubmed25n1066.xml 
035 |a (DE-627)NLM319974960 
035 |a (NLM)33434124 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wang, Wenguan  |e verfasserin  |4 aut 
245 1 0 |a Salient Object Detection in the Deep Learning Era  |b An In-Depth Survey 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 09.05.2022 
500 |a Date Revised 06.01.2025 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a As an essential problem in computer vision, salient object detection (SOD) has attracted an increasing amount of research attention over the years. Recent advances in SOD are predominantly led by deep learning-based solutions (named deep SOD). To enable in-depth understanding of deep SOD, in this paper, we provide a comprehensive survey covering various aspects, ranging from algorithm taxonomy to unsolved issues. In particular, we first review deep SOD algorithms from different perspectives, including network architecture, level of supervision, learning paradigm, and object-/instance-level detection. Following that, we summarize and analyze existing SOD datasets and evaluation metrics. Then, we benchmark a large group of representative SOD models, and provide detailed analyses of the comparison results. Moreover, we study the performance of SOD algorithms under different attribute settings, which has not been thoroughly explored previously, by constructing a novel SOD dataset with rich attribute annotations covering various salient object types, challenging factors, and scene categories. We further analyze, for the first time in the field, the robustness of SOD models to random input perturbations and adversarial attacks. We also look into the generalization and difficulty of existing SOD datasets. Finally, we discuss several open issues of SOD and outline future research directions. All the saliency prediction maps, our constructed dataset with annotations, and codes for evaluation are publicly available at https://github.com/wenguanwang/SODsurvey 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 7 |a Superoxide Dismutase  |2 NLM 
650 7 |a EC 1.15.1.1  |2 NLM 
700 1 |a Lai, Qiuxia  |e verfasserin  |4 aut 
700 1 |a Fu, Huazhu  |e verfasserin  |4 aut 
700 1 |a Shen, Jianbing  |e verfasserin  |4 aut 
700 1 |a Ling, Haibin  |e verfasserin  |4 aut 
700 1 |a Yang, Ruigang  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 44(2022), 6 vom: 01. Juni, Seite 3239-3259  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnas 
773 1 8 |g volume:44  |g year:2022  |g number:6  |g day:01  |g month:06  |g pages:3239-3259 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2021.3051099  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 44  |j 2022  |e 6  |b 01  |c 06  |h 3239-3259