Distribution of ammonia-oxidizing archaea and bacteria along an engineered coastal ecosystem in subtropical China

© 2021. Springer Science+Business Media, LLC, part of Springer Nature.

Bibliographische Detailangaben
Veröffentlicht in:Ecotoxicology (London, England). - 1992. - 30(2021), 8 vom: 12. Okt., Seite 1769-1779
1. Verfasser: Wang, Yong-Feng (VerfasserIn)
Weitere Verfasser: Gu, Ji-Dong, Dick, Richard P, Han, Wei, Yang, Hui-Xiao, Liao, Huan-Qin, Zhou, Yi, Meng, Han
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Ecotoxicology (London, England)
Schlagworte:Journal Article AOA AOB Casuarina equisetifolia Farmland Human activities Shelterbelt Soil Ammonia 7664-41-7
Beschreibung
Zusammenfassung:© 2021. Springer Science+Business Media, LLC, part of Springer Nature.
Ammonia-oxidizing archaea (AOA) and bacteria (AOB) are the crucial players in nitrogen cycle. Both AOA and AOB were examined along a gradient of human activity in a coastal ecosystem from intertidal zone, grassland, and Casuarina equisetifolia forest to farmland. Results showed that the farmland soils had noticeably higher nitrate-N, available P than soils in the other three sites. Generally, AOA and AOB community structures varied across sites. The farmland mainly had Nitrosotalea-like AOA, intertidal zone was dominated by Nitrosopumilus AOA, while grassland and C. equisetifolia forest primarily harbored Nitrososphaera-like AOA. The farmland and C. equisetifolia forest owned Nitrosospira-like AOB, intertidal zone possessed Nitrosomonas-like AOB, and no AOB was detected in the grassland. AOA abundance was significantly greater than AOB in this coastal ecosystem (p < 0.05, n = 8). AOB diversity and abundance in the farmland were significantly higher than those in the other three sites (p < 0.05, n = 2). The biodiversity and abundance of AOA were not significantly correlated with any soil property (p < 0.05, n = 8). However, the diversity of AOB was significantly correlated with pH, available P and total P (p < 0.05, n = 6). The abundance of AOB was significantly correlated with pH, nitrite, available N, available P and total P (p < 0.05, n = 6). This study suggested that the community structures of AOA and AOB vary in the different parts in the bio-engineered coastal ecosystem and agricultural activity appears to influence these nitrifiers
Beschreibung:Date Completed 13.09.2021
Date Revised 13.09.2021
published: Print-Electronic
Citation Status MEDLINE
ISSN:1573-3017
DOI:10.1007/s10646-020-02327-9