Generative Partial Multi-View Clustering With Adaptive Fusion and Cycle Consistency

Nowadays, with the rapid development of data collection sources and feature extraction methods, multi-view data are getting easy to obtain and have received increasing research attention in recent years, among which, multi-view clustering (MVC) forms a mainstream research direction and is widely use...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 30(2021) vom: 20., Seite 1771-1783
1. Verfasser: Wang, Qianqian (VerfasserIn)
Weitere Verfasser: Ding, Zhengming, Tao, Zhiqiang, Gao, Quanxue, Fu, Yun
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM319811603
003 DE-627
005 20231225172240.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2020.3048626  |2 doi 
028 5 2 |a pubmed24n1066.xml 
035 |a (DE-627)NLM319811603 
035 |a (NLM)33417549 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wang, Qianqian  |e verfasserin  |4 aut 
245 1 0 |a Generative Partial Multi-View Clustering With Adaptive Fusion and Cycle Consistency 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 15.01.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Nowadays, with the rapid development of data collection sources and feature extraction methods, multi-view data are getting easy to obtain and have received increasing research attention in recent years, among which, multi-view clustering (MVC) forms a mainstream research direction and is widely used in data analysis. However, existing MVC methods mainly assume that each sample appears in all the views, without considering the incomplete view case due to data corruption, sensor failure, equipment malfunction, etc. In this study, we design and build a generative partial multi-view clustering model with adaptive fusion and cycle consistency, named as GP-MVC, to solve the incomplete multi-view problem by explicitly generating the data of missing views. The main idea of GP-MVC lies in two-fold. First, multi-view encoder networks are trained to learn common low-dimensional representations, followed by a clustering layer to capture the shared cluster structure across multiple views. Second, view-specific generative adversarial networks with multi-view cycle consistency are developed to generate the missing data of one view conditioning on the shared representation given by other views. These two steps could be promoted mutually, where the learned common representation facilitates data imputation and the generated data could further explores the view consistency. Moreover, an weighted adaptive fusion scheme is implemented to exploit the complementary information among different views. Experimental results on four benchmark datasets are provided to show the effectiveness of the proposed GP-MVC over the state-of-the-art methods 
650 4 |a Journal Article 
700 1 |a Ding, Zhengming  |e verfasserin  |4 aut 
700 1 |a Tao, Zhiqiang  |e verfasserin  |4 aut 
700 1 |a Gao, Quanxue  |e verfasserin  |4 aut 
700 1 |a Fu, Yun  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 30(2021) vom: 20., Seite 1771-1783  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:30  |g year:2021  |g day:20  |g pages:1771-1783 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2020.3048626  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2021  |b 20  |h 1771-1783