|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM319811581 |
003 |
DE-627 |
005 |
20231225172240.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2021 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1109/TIP.2020.3048623
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1066.xml
|
035 |
|
|
|a (DE-627)NLM319811581
|
035 |
|
|
|a (NLM)33417547
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Liu, Xinhai
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Fine-Grained 3D Shape Classification With Hierarchical Part-View Attention
|
264 |
|
1 |
|c 2021
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 15.01.2021
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a Fine-grained 3D shape classification is important for shape understanding and analysis, which poses a challenging research problem. However, the studies on the fine-grained 3D shape classification have rarely been explored, due to the lack of fine-grained 3D shape benchmarks. To address this issue, we first introduce a new 3D shape dataset (named FG3D dataset) with fine-grained class labels, which consists of three categories including airplane, car and chair. Each category consists of several subcategories at a fine-grained level. According to our experiments under this fine-grained dataset, we find that state-of-the-art methods are significantly limited by the small variance among subcategories in the same category. To resolve this problem, we further propose a novel fine-grained 3D shape classification method named FG3D-Net to capture the fine-grained local details of 3D shapes from multiple rendered views. Specifically, we first train a Region Proposal Network (RPN) to detect the generally semantic parts inside multiple views under the benchmark of generally semantic part detection. Then, we design a hierarchical part-view attention aggregation module to learn a global shape representation by aggregating generally semantic part features, which preserves the local details of 3D shapes. The part-view attention module hierarchically leverages part-level and view-level attention to increase the discriminability of our features. The part-level attention highlights the important parts in each view while the view-level attention highlights the discriminative views among all the views of the same object. In addition, we integrate a Recurrent Neural Network (RNN) to capture the spatial relationships among sequential views from different viewpoints. Our results under the fine-grained 3D shape dataset show that our method outperforms other state-of-the-art methods. The FG3D dataset is available at https://github.com/liuxinhai/FG3D-Net
|
650 |
|
4 |
|a Journal Article
|
700 |
1 |
|
|a Han, Zhizhong
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Liu, Yu-Shen
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zwicker, Matthias
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
|d 1992
|g 30(2021) vom: 20., Seite 1744-1758
|w (DE-627)NLM09821456X
|x 1941-0042
|7 nnns
|
773 |
1 |
8 |
|g volume:30
|g year:2021
|g day:20
|g pages:1744-1758
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1109/TIP.2020.3048623
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 30
|j 2021
|b 20
|h 1744-1758
|