Genomic resources in plant breeding for sustainable agriculture

Copyright © 2020 The Author(s). Published by Elsevier GmbH.. All rights reserved.

Bibliographische Detailangaben
Veröffentlicht in:Journal of plant physiology. - 1979. - 257(2021) vom: 15. Feb., Seite 153351
1. Verfasser: Thudi, Mahendar (VerfasserIn)
Weitere Verfasser: Palakurthi, Ramesh, Schnable, James C, Chitikineni, Annapurna, Dreisigacker, Susanne, Mace, Emma, Srivastava, Rakesh K, Satyavathi, C Tara, Odeny, Damaris, Tiwari, Vijay K, Lam, Hon-Ming, Hong, Yan Bin, Singh, Vikas K, Li, Guowei, Xu, Yunbi, Chen, Xiaoping, Kaila, Sanjay, Nguyen, Henry, Sivasankar, Sobhana, Jackson, Scott A, Close, Timothy J, Shubo, Wan, Varshney, Rajeev K
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Journal of plant physiology
Schlagworte:Journal Article Review Genomic breeding Genomic selection Genomics Genomics-assisted breeding Genotyping platforms Sequence-based trait mapping Sequencing
LEADER 01000naa a22002652 4500
001 NLM319761010
003 DE-627
005 20231225172132.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.jplph.2020.153351  |2 doi 
028 5 2 |a pubmed24n1065.xml 
035 |a (DE-627)NLM319761010 
035 |a (NLM)33412425 
035 |a (PII)S0176-1617(20)30241-8 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Thudi, Mahendar  |e verfasserin  |4 aut 
245 1 0 |a Genomic resources in plant breeding for sustainable agriculture 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 27.05.2021 
500 |a Date Revised 10.11.2023 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Copyright © 2020 The Author(s). Published by Elsevier GmbH.. All rights reserved. 
520 |a Climate change during the last 40 years has had a serious impact on agriculture and threatens global food and nutritional security. From over half a million plant species, cereals and legumes are the most important for food and nutritional security. Although systematic plant breeding has a relatively short history, conventional breeding coupled with advances in technology and crop management strategies has increased crop yields by 56 % globally between 1965-85, referred to as the Green Revolution. Nevertheless, increased demand for food, feed, fiber, and fuel necessitates the need to break existing yield barriers in many crop plants. In the first decade of the 21st century we witnessed rapid discovery, transformative technological development and declining costs of genomics technologies. In the second decade, the field turned towards making sense of the vast amount of genomic information and subsequently moved towards accurately predicting gene-to-phenotype associations and tailoring plants for climate resilience and global food security. In this review we focus on genomic resources, genome and germplasm sequencing, sequencing-based trait mapping, and genomics-assisted breeding approaches aimed at developing biotic stress resistant, abiotic stress tolerant and high nutrition varieties in six major cereals (rice, maize, wheat, barley, sorghum and pearl millet), and six major legumes (soybean, groundnut, cowpea, common bean, chickpea and pigeonpea). We further provide a perspective and way forward to use genomic breeding approaches including marker-assisted selection, marker-assisted backcrossing, haplotype based breeding and genomic prediction approaches coupled with machine learning and artificial intelligence, to speed breeding approaches. The overall goal is to accelerate genetic gains and deliver climate resilient and high nutrition crop varieties for sustainable agriculture 
650 4 |a Journal Article 
650 4 |a Review 
650 4 |a Genomic breeding 
650 4 |a Genomic selection 
650 4 |a Genomics 
650 4 |a Genomics-assisted breeding 
650 4 |a Genotyping platforms 
650 4 |a Sequence-based trait mapping 
650 4 |a Sequencing 
700 1 |a Palakurthi, Ramesh  |e verfasserin  |4 aut 
700 1 |a Schnable, James C  |e verfasserin  |4 aut 
700 1 |a Chitikineni, Annapurna  |e verfasserin  |4 aut 
700 1 |a Dreisigacker, Susanne  |e verfasserin  |4 aut 
700 1 |a Mace, Emma  |e verfasserin  |4 aut 
700 1 |a Srivastava, Rakesh K  |e verfasserin  |4 aut 
700 1 |a Satyavathi, C Tara  |e verfasserin  |4 aut 
700 1 |a Odeny, Damaris  |e verfasserin  |4 aut 
700 1 |a Tiwari, Vijay K  |e verfasserin  |4 aut 
700 1 |a Lam, Hon-Ming  |e verfasserin  |4 aut 
700 1 |a Hong, Yan Bin  |e verfasserin  |4 aut 
700 1 |a Singh, Vikas K  |e verfasserin  |4 aut 
700 1 |a Li, Guowei  |e verfasserin  |4 aut 
700 1 |a Xu, Yunbi  |e verfasserin  |4 aut 
700 1 |a Chen, Xiaoping  |e verfasserin  |4 aut 
700 1 |a Kaila, Sanjay  |e verfasserin  |4 aut 
700 1 |a Nguyen, Henry  |e verfasserin  |4 aut 
700 1 |a Sivasankar, Sobhana  |e verfasserin  |4 aut 
700 1 |a Jackson, Scott A  |e verfasserin  |4 aut 
700 1 |a Close, Timothy J  |e verfasserin  |4 aut 
700 1 |a Shubo, Wan  |e verfasserin  |4 aut 
700 1 |a Varshney, Rajeev K  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of plant physiology  |d 1979  |g 257(2021) vom: 15. Feb., Seite 153351  |w (DE-627)NLM098174622  |x 1618-1328  |7 nnns 
773 1 8 |g volume:257  |g year:2021  |g day:15  |g month:02  |g pages:153351 
856 4 0 |u http://dx.doi.org/10.1016/j.jplph.2020.153351  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 257  |j 2021  |b 15  |c 02  |h 153351