Forced Crowding of Colloids by Thermophoresis and Convection in a Custom Liquid Clusius-Dickel Microdevice

We report a study demonstrating that simultaneous induction of a steady-state convection current and temperature gradient in a confined geometry can be an effective way to force crowding of dissolved particulates. To investigate this thermogravitationally driven concentration of particles in situ, w...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1999. - 37(2021), 2 vom: 19. Jan., Seite 675-682
1. Verfasser: Light, Brandon S (VerfasserIn)
Weitere Verfasser: Zepeda-Rosales, Miguel, Li, Youli, Safinya, Cyrus R
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, U.S. Gov't, Non-P.H.S.
LEADER 01000naa a22002652 4500
001 NLM319705927
003 DE-627
005 20231225172022.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1021/acs.langmuir.0c02721  |2 doi 
028 5 2 |a pubmed24n1065.xml 
035 |a (DE-627)NLM319705927 
035 |a (NLM)33406832 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Light, Brandon S  |e verfasserin  |4 aut 
245 1 0 |a Forced Crowding of Colloids by Thermophoresis and Convection in a Custom Liquid Clusius-Dickel Microdevice 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 27.01.2021 
500 |a Date Revised 27.01.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a We report a study demonstrating that simultaneous induction of a steady-state convection current and temperature gradient in a confined geometry can be an effective way to force crowding of dissolved particulates. To investigate this thermogravitationally driven concentration of particles in situ, we developed a microdevice capable of sustaining controlled transverse temperature gradients within a 5 cm long, 0.1 mm inner diameter capillary that allowed visualization of particle movement with standard optical microscopy. Experiments were conducted on two material systems representative of nanoscale small molecules and microscale particles. With the small molecules (aromatic dyes, 530-790 g/mol, 1-1.5 nm), thermophoretic and gravitational effects in the microdevice resulted in an asymmetrical 2× concentration change along the capillary height over 3 days. In contrast, the concentration change under similar conditions for 40-micron diameter latex colloids is 50-fold in 30 min. This dramatic difference in separation times is consistent with simulations and models of thermophoresis where the thermophoretic effect scales with particle size. Induced crowding of particulates leads to formation of accumulation and depletion zones at the bottom and top of the capillary, respectively. Both the concentration of dye molecules over time in the depletion zone and the spatial distribution of colloids over the entire capillary length were found to be good fits to simple first-order exponential decay functions. These results suggest potential applications of thermogravitational separation in developing new functional materials via thermophoretic and convective effects 
650 4 |a Journal Article 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
700 1 |a Zepeda-Rosales, Miguel  |e verfasserin  |4 aut 
700 1 |a Li, Youli  |e verfasserin  |4 aut 
700 1 |a Safinya, Cyrus R  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Langmuir : the ACS journal of surfaces and colloids  |d 1999  |g 37(2021), 2 vom: 19. Jan., Seite 675-682  |w (DE-627)NLM098181009  |x 1520-5827  |7 nnns 
773 1 8 |g volume:37  |g year:2021  |g number:2  |g day:19  |g month:01  |g pages:675-682 
856 4 0 |u http://dx.doi.org/10.1021/acs.langmuir.0c02721  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_22 
912 |a GBV_ILN_350 
912 |a GBV_ILN_721 
951 |a AR 
952 |d 37  |j 2021  |e 2  |b 19  |c 01  |h 675-682