Tundra wildfire triggers sustained lateral nutrient loss in Alaskan Arctic

© 2021 John Wiley & Sons Ltd.

Bibliographische Detailangaben
Veröffentlicht in:Global change biology. - 1999. - 27(2021), 7 vom: 01. Apr., Seite 1408-1430
1. Verfasser: Abbott, Benjamin W (VerfasserIn)
Weitere Verfasser: Rocha, Adrian V, Shogren, Arial, Zarnetske, Jay P, Iannucci, Frances, Bowden, William B, Bratsman, Samuel P, Patch, Leika, Watts, Rachel, Fulweber, Randy, Frei, Rebecca J, Huebner, Amanda M, Ludwig, Sarah M, Carling, Gregory T, O'Donnell, Jonathan A
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Global change biology
Schlagworte:Journal Article Arctic disturbance ecosystem succession hydrology nutrient flux permafrost streams tundra watershed mehr... wildfire Soil
LEADER 01000naa a22002652 4500
001 NLM31958514X
003 DE-627
005 20231225171749.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1111/gcb.15507  |2 doi 
028 5 2 |a pubmed24n1065.xml 
035 |a (DE-627)NLM31958514X 
035 |a (NLM)33394532 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Abbott, Benjamin W  |e verfasserin  |4 aut 
245 1 0 |a Tundra wildfire triggers sustained lateral nutrient loss in Alaskan Arctic 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 23.04.2021 
500 |a Date Revised 23.04.2021 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2021 John Wiley & Sons Ltd. 
520 |a Climate change is creating widespread ecosystem disturbance across the permafrost zone, including a rapid increase in the extent and severity of tundra wildfire. The expansion of this previously rare disturbance has unknown consequences for lateral nutrient flux from terrestrial to aquatic environments. Lateral loss of nutrients could reduce carbon uptake and slow recovery of already nutrient-limited tundra ecosystems. To investigate the effects of tundra wildfire on lateral nutrient export, we analyzed water chemistry in and around the 10-year-old  Anaktuvuk River fire scar in northern Alaska. We collected water samples from 21 burned and 21 unburned watersheds during snowmelt, at peak growing season, and after plant senescence in 2017 and 2018. After a decade of ecosystem recovery, aboveground biomass had recovered in burned watersheds, but overall carbon and nitrogen remained ~20% lower, and the active layer remained ~10% deeper. Despite lower organic matter stocks, dissolved organic nutrients were substantially elevated in burned watersheds, with higher flow-weighted concentrations of organic carbon (25% higher), organic nitrogen (59% higher), organic phosphorus (65% higher), and organic sulfur (47% higher). Geochemical proxies indicated greater interaction with mineral soils in watersheds with surface subsidence, but optical analysis and isotopes suggested that recent plant growth, not mineral soil, was the main source of organic nutrients in burned watersheds. Burned and unburned watersheds had similar δ15 N-NO3 - , indicating that exported nitrogen was of preburn origin (i.e., not recently fixed). Lateral nitrogen flux from burned watersheds was 2- to 10-fold higher than rates of background nitrogen fixation and atmospheric deposition estimated in this area. These findings indicate that wildfire in Arctic tundra can destabilize nitrogen, phosphorus, and sulfur previously stored in permafrost via plant uptake and leaching. This plant-mediated nutrient loss could exacerbate terrestrial nutrient limitation after disturbance or serve as an important nutrient release mechanism during succession 
650 4 |a Journal Article 
650 4 |a Arctic 
650 4 |a disturbance 
650 4 |a ecosystem succession 
650 4 |a hydrology 
650 4 |a nutrient flux 
650 4 |a permafrost 
650 4 |a streams 
650 4 |a tundra 
650 4 |a watershed 
650 4 |a wildfire 
650 7 |a Soil  |2 NLM 
700 1 |a Rocha, Adrian V  |e verfasserin  |4 aut 
700 1 |a Shogren, Arial  |e verfasserin  |4 aut 
700 1 |a Zarnetske, Jay P  |e verfasserin  |4 aut 
700 1 |a Iannucci, Frances  |e verfasserin  |4 aut 
700 1 |a Bowden, William B  |e verfasserin  |4 aut 
700 1 |a Bratsman, Samuel P  |e verfasserin  |4 aut 
700 1 |a Patch, Leika  |e verfasserin  |4 aut 
700 1 |a Watts, Rachel  |e verfasserin  |4 aut 
700 1 |a Fulweber, Randy  |e verfasserin  |4 aut 
700 1 |a Frei, Rebecca J  |e verfasserin  |4 aut 
700 1 |a Huebner, Amanda M  |e verfasserin  |4 aut 
700 1 |a Ludwig, Sarah M  |e verfasserin  |4 aut 
700 1 |a Carling, Gregory T  |e verfasserin  |4 aut 
700 1 |a O'Donnell, Jonathan A  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Global change biology  |d 1999  |g 27(2021), 7 vom: 01. Apr., Seite 1408-1430  |w (DE-627)NLM098239996  |x 1365-2486  |7 nnns 
773 1 8 |g volume:27  |g year:2021  |g number:7  |g day:01  |g month:04  |g pages:1408-1430 
856 4 0 |u http://dx.doi.org/10.1111/gcb.15507  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 27  |j 2021  |e 7  |b 01  |c 04  |h 1408-1430