Calcium-hydrogen sulfide crosstalk during K+-deficient NaCl stress operates through regulation of Na+/H+ antiport and antioxidative defense system in mung bean roots

Copyright © 2020 Elsevier Masson SAS. All rights reserved.

Bibliographische Detailangaben
Veröffentlicht in:Plant physiology and biochemistry : PPB. - 1991. - 159(2021) vom: 01. Feb., Seite 211-225
1. Verfasser: Khan, M Nasir (VerfasserIn)
Weitere Verfasser: Siddiqui, Manzer H, Mukherjee, Soumya, Alamri, Saud, Al-Amri, Abdullah A, Alsubaie, Qasi D, Al-Munqedhi, Bander M A, Ali, Hayssam M
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Plant physiology and biochemistry : PPB
Schlagworte:Journal Article Ascorbate-glutathione cycle Calcium signaling Hydrogen sulfide Na(+)/H(+) antiport Proline Redox homeostasis Antioxidants Sodium-Hydrogen Exchangers Sodium Chloride mehr... 451W47IQ8X Potassium RWP5GA015D Calcium SY7Q814VUP Hydrogen Sulfide YY9FVM7NSN
LEADER 01000naa a22002652 4500
001 NLM319497364
003 DE-627
005 20231225171553.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.plaphy.2020.11.055  |2 doi 
028 5 2 |a pubmed24n1064.xml 
035 |a (DE-627)NLM319497364 
035 |a (NLM)33385704 
035 |a (PII)S0981-9428(20)30618-5 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Khan, M Nasir  |e verfasserin  |4 aut 
245 1 0 |a Calcium-hydrogen sulfide crosstalk during K+-deficient NaCl stress operates through regulation of Na+/H+ antiport and antioxidative defense system in mung bean roots 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 16.02.2021 
500 |a Date Revised 16.02.2021 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Copyright © 2020 Elsevier Masson SAS. All rights reserved. 
520 |a Present investigation reports the role of calcium (Ca2+) and hydrogen sulfide (H2S) crosstalk associated with Vigna radiata seedlings subjected to K+ deficient conditions under short-term (24 h) and long-term (72 h) NaCl stress. Perusal of the data reveals that under short-term NaCl stress an initial decline in K+ level led to the elevation in Ca2+ and H2S levels along with improvement in antioxidant system and reduction in reactive oxygen species (ROS) production. Under long-term NaCl stress a further decline in K+ content was deleterious that led to a lower K+/Na+ ratio. This was followed by reduction in antioxidant system along with excessive accumulation of ROS and methylglyoxal content, and increased membrane damage. However, supplementation of the seedling roots with Ca2+ enhanced biosynthesis of H2S through enhancing cysteine pool. The present findings suggest that synergistic action of Ca2+ and H2S induced the activity of H+-ATPase that created H+ gradient which in turn induced Na+/H+ antiport system that accelerated K+ influx and Na+ efflux. All of these together contributed to a higher K+/Na+ ratio, activation of antioxidative defense system, and maintenance of redox homeostasis and membrane integrity in Ca2+-supplemented stressed seedlings. Role of Ca2+ and H2S in the regulation of Na+/H+ antiport system was validated by the use of sodium orthovanadate (plasma membrane H+-ATPase inhibitor), tetraethylammonium chloride (K+ channel blocker), and amiloride (Na+/H+ antiporter inhibitor). Application of Ca2+-chelator EGTA (ethylene glycol-bis(b-aminoethylether)-N,N,N',N'-tetraacetic acid) and H2S scavenger hypotaurine abolished the effect of Ca2+, suggesting the involvement of Ca2+ and H2S in the alleviation of NaCl stress. Moreover, use of EGTA and HT also substantiates the downstream functioning of H2S during Ca2+-mediated regulation of plant adaptive responses to NaCl stress. To sum up, present findings reveal the association of Ca2+ and H2S signaling in the regulation of ion homeostasis and antioxidant defense during K+-deficient NaCl stress 
650 4 |a Journal Article 
650 4 |a Ascorbate-glutathione cycle 
650 4 |a Calcium signaling 
650 4 |a Hydrogen sulfide 
650 4 |a Na(+)/H(+) antiport 
650 4 |a Proline 
650 4 |a Redox homeostasis 
650 7 |a Antioxidants  |2 NLM 
650 7 |a Sodium-Hydrogen Exchangers  |2 NLM 
650 7 |a Sodium Chloride  |2 NLM 
650 7 |a 451W47IQ8X  |2 NLM 
650 7 |a Potassium  |2 NLM 
650 7 |a RWP5GA015D  |2 NLM 
650 7 |a Calcium  |2 NLM 
650 7 |a SY7Q814VUP  |2 NLM 
650 7 |a Hydrogen Sulfide  |2 NLM 
650 7 |a YY9FVM7NSN  |2 NLM 
700 1 |a Siddiqui, Manzer H  |e verfasserin  |4 aut 
700 1 |a Mukherjee, Soumya  |e verfasserin  |4 aut 
700 1 |a Alamri, Saud  |e verfasserin  |4 aut 
700 1 |a Al-Amri, Abdullah A  |e verfasserin  |4 aut 
700 1 |a Alsubaie, Qasi D  |e verfasserin  |4 aut 
700 1 |a Al-Munqedhi, Bander M A  |e verfasserin  |4 aut 
700 1 |a Ali, Hayssam M  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Plant physiology and biochemistry : PPB  |d 1991  |g 159(2021) vom: 01. Feb., Seite 211-225  |w (DE-627)NLM098178261  |x 1873-2690  |7 nnns 
773 1 8 |g volume:159  |g year:2021  |g day:01  |g month:02  |g pages:211-225 
856 4 0 |u http://dx.doi.org/10.1016/j.plaphy.2020.11.055  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 159  |j 2021  |b 01  |c 02  |h 211-225